经皮给药用3D打印固体微针制造参数优化

Kenan Muhamedagic, A. Tucak, M. Sirbubalo, O. Rahić, Lamija Hindija, J. Hadžiabdić, E. Vranić, A. Çekiç
{"title":"经皮给药用3D打印固体微针制造参数优化","authors":"Kenan Muhamedagic, A. Tucak, M. Sirbubalo, O. Rahić, Lamija Hindija, J. Hadžiabdić, E. Vranić, A. Çekiç","doi":"10.3390/MICROMACHINES2021-09591","DOIUrl":null,"url":null,"abstract":"Microneedles (MNs) have been manufactured using a variety of methods from a range of materials, but most of them are expensive and time-consuming for screening new designs and making any modifications. Therefore, stereolithography (SLA) has emerged as a promising approach for MN fabrication due to its numerous advantages, including simplicity, low cost, and the ability to manufacture complex geometrical products at any time, including modifications to the original designs. This work aimed to print MNs using SLA technology and investigate the effects of post-printing curing conditions on the mechanical properties of 3D-printed MNs. \nSolid MNs were designed using CAD software and printed with grey resin (Formlabs, UK) using Form 3 printer (Formlabs, UK). MNs dimensions were 1.2 × 0.4 × 0.05 mm, arranged in 6 rows and 6 columns on a 10 × 10 mm baseplate. MNs were then immersed in an isopropyl alcohol bath to remove unpolymerized resin residues and cured in a UV-A heated chamber (Formlabs, UK). In total, nine samples were taken for each combination of curing temperature (35°C, 50°C, and 70°C) and curing time (5 min, 20 min, and 60 min). Fracture tests were conducted using a hardness apparatus TB24 (Erweka, Germany). MNs were placed on the moving probe of the machine and compressed until fracture. \nThe optimization of the SLA process parameters for improving the strength of MNs was performed using the Taguchi method. The design of experiments was carried out based on the Taguchi L9 orthogonal array. Experimental results showed that the curing temperature has a significant influence on MN strength improvements. Improvement of the MN strength can be achieved by increasing the curing temperature and curing time.","PeriodicalId":137788,"journal":{"name":"Proceedings of Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Manufacturing Parameters of 3D Printed Solid Microneedles for Transdermal Drug Delivery\",\"authors\":\"Kenan Muhamedagic, A. Tucak, M. Sirbubalo, O. Rahić, Lamija Hindija, J. Hadžiabdić, E. Vranić, A. Çekiç\",\"doi\":\"10.3390/MICROMACHINES2021-09591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microneedles (MNs) have been manufactured using a variety of methods from a range of materials, but most of them are expensive and time-consuming for screening new designs and making any modifications. Therefore, stereolithography (SLA) has emerged as a promising approach for MN fabrication due to its numerous advantages, including simplicity, low cost, and the ability to manufacture complex geometrical products at any time, including modifications to the original designs. This work aimed to print MNs using SLA technology and investigate the effects of post-printing curing conditions on the mechanical properties of 3D-printed MNs. \\nSolid MNs were designed using CAD software and printed with grey resin (Formlabs, UK) using Form 3 printer (Formlabs, UK). MNs dimensions were 1.2 × 0.4 × 0.05 mm, arranged in 6 rows and 6 columns on a 10 × 10 mm baseplate. MNs were then immersed in an isopropyl alcohol bath to remove unpolymerized resin residues and cured in a UV-A heated chamber (Formlabs, UK). In total, nine samples were taken for each combination of curing temperature (35°C, 50°C, and 70°C) and curing time (5 min, 20 min, and 60 min). Fracture tests were conducted using a hardness apparatus TB24 (Erweka, Germany). MNs were placed on the moving probe of the machine and compressed until fracture. \\nThe optimization of the SLA process parameters for improving the strength of MNs was performed using the Taguchi method. The design of experiments was carried out based on the Taguchi L9 orthogonal array. Experimental results showed that the curing temperature has a significant influence on MN strength improvements. Improvement of the MN strength can be achieved by increasing the curing temperature and curing time.\",\"PeriodicalId\":137788,\"journal\":{\"name\":\"Proceedings of Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/MICROMACHINES2021-09591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/MICROMACHINES2021-09591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微针(MNs)的制造方法多种多样,材料也多种多样,但大多数方法在筛选新设计和进行任何修改时都是昂贵且耗时的。因此,立体光刻(SLA)已成为锰制造的一种有前途的方法,因为它具有许多优点,包括简单,低成本,以及随时制造复杂几何产品的能力,包括对原始设计的修改。这项工作旨在使用SLA技术打印纳米颗粒,并研究打印后固化条件对3d打印纳米颗粒机械性能的影响。使用CAD软件设计实体mn,并使用Form 3打印机(Formlabs, UK)使用灰色树脂(Formlabs, UK)进行打印。MNs尺寸为1.2 × 0.4 × 0.05 mm,在10 × 10 mm的底板上按6排6列排列。然后将纳米颗粒浸入异丙醇浴中以去除未聚合的树脂残留物,并在UV-A加热室中固化(Formlabs, UK)。在养护温度(35°C、50°C和70°C)和养护时间(5分钟、20分钟和60分钟)的不同组合下,共采集9个样品。断裂试验采用TB24硬度仪(Erweka, Germany)进行。将MNs放置在机器的移动探针上并压缩直至断裂。采用田口法对SLA工艺参数进行优化,以提高纳米颗粒的强度。实验设计基于田口L9正交阵列。实验结果表明,养护温度对MN强度的提高有显著影响。通过提高固化温度和固化时间可以提高MN的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Manufacturing Parameters of 3D Printed Solid Microneedles for Transdermal Drug Delivery
Microneedles (MNs) have been manufactured using a variety of methods from a range of materials, but most of them are expensive and time-consuming for screening new designs and making any modifications. Therefore, stereolithography (SLA) has emerged as a promising approach for MN fabrication due to its numerous advantages, including simplicity, low cost, and the ability to manufacture complex geometrical products at any time, including modifications to the original designs. This work aimed to print MNs using SLA technology and investigate the effects of post-printing curing conditions on the mechanical properties of 3D-printed MNs. Solid MNs were designed using CAD software and printed with grey resin (Formlabs, UK) using Form 3 printer (Formlabs, UK). MNs dimensions were 1.2 × 0.4 × 0.05 mm, arranged in 6 rows and 6 columns on a 10 × 10 mm baseplate. MNs were then immersed in an isopropyl alcohol bath to remove unpolymerized resin residues and cured in a UV-A heated chamber (Formlabs, UK). In total, nine samples were taken for each combination of curing temperature (35°C, 50°C, and 70°C) and curing time (5 min, 20 min, and 60 min). Fracture tests were conducted using a hardness apparatus TB24 (Erweka, Germany). MNs were placed on the moving probe of the machine and compressed until fracture. The optimization of the SLA process parameters for improving the strength of MNs was performed using the Taguchi method. The design of experiments was carried out based on the Taguchi L9 orthogonal array. Experimental results showed that the curing temperature has a significant influence on MN strength improvements. Improvement of the MN strength can be achieved by increasing the curing temperature and curing time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信