具有锥约束和离散决策的多周期投资组合优化模型

Ümit Sağlam, Hande Y. Benson
{"title":"具有锥约束和离散决策的多周期投资组合优化模型","authors":"Ümit Sağlam, Hande Y. Benson","doi":"10.2139/ssrn.2932567","DOIUrl":null,"url":null,"abstract":"In this study, we consider multi-period portfolio optimization model that is formulated as a mixed-integer second-order cone programming problems (MISOCPs). The Markowitz (1952) mean/variance framework has been extended by including transaction costs, conditional value-at-risk (CVaR), diversification-by-sector and buy-in thresholds constraints. The model is obtained using a binary scenario tree that is constructed with monthly returns of the stocks from the S&P 500. We solve these models with a MATLAB based Mixed Integer Linear and Nonlinear Optimizer (MILANO). Numerical results show that we can solve small to medium-sized instances successfully, and we provide a substantial improvement in runtimes using warmstarts in outer approximation algorithm.","PeriodicalId":365755,"journal":{"name":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Period Portfolio Optimization Model with Cone Constraints and Discrete Decisions\",\"authors\":\"Ümit Sağlam, Hande Y. Benson\",\"doi\":\"10.2139/ssrn.2932567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we consider multi-period portfolio optimization model that is formulated as a mixed-integer second-order cone programming problems (MISOCPs). The Markowitz (1952) mean/variance framework has been extended by including transaction costs, conditional value-at-risk (CVaR), diversification-by-sector and buy-in thresholds constraints. The model is obtained using a binary scenario tree that is constructed with monthly returns of the stocks from the S&P 500. We solve these models with a MATLAB based Mixed Integer Linear and Nonlinear Optimizer (MILANO). Numerical results show that we can solve small to medium-sized instances successfully, and we provide a substantial improvement in runtimes using warmstarts in outer approximation algorithm.\",\"PeriodicalId\":365755,\"journal\":{\"name\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2932567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2932567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了将多周期投资组合优化模型表述为混合整数二阶锥规划问题(misocp)。马科维茨(1952)的均值/方差框架被扩展为包括交易成本、条件风险价值(CVaR)、部门多样化和买入阈值约束。该模型是使用一个二元场景树获得的,该树由标准普尔500指数股票的月收益构造而成。我们使用基于MATLAB的混合整数线性和非线性优化器(MILANO)来求解这些模型。数值结果表明,我们可以成功地求解中小型实例,并且我们在外部近似算法中使用了warmstarts,在运行时间上有了很大的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Period Portfolio Optimization Model with Cone Constraints and Discrete Decisions
In this study, we consider multi-period portfolio optimization model that is formulated as a mixed-integer second-order cone programming problems (MISOCPs). The Markowitz (1952) mean/variance framework has been extended by including transaction costs, conditional value-at-risk (CVaR), diversification-by-sector and buy-in thresholds constraints. The model is obtained using a binary scenario tree that is constructed with monthly returns of the stocks from the S&P 500. We solve these models with a MATLAB based Mixed Integer Linear and Nonlinear Optimizer (MILANO). Numerical results show that we can solve small to medium-sized instances successfully, and we provide a substantial improvement in runtimes using warmstarts in outer approximation algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信