{"title":"具有锥约束和离散决策的多周期投资组合优化模型","authors":"Ümit Sağlam, Hande Y. Benson","doi":"10.2139/ssrn.2932567","DOIUrl":null,"url":null,"abstract":"In this study, we consider multi-period portfolio optimization model that is formulated as a mixed-integer second-order cone programming problems (MISOCPs). The Markowitz (1952) mean/variance framework has been extended by including transaction costs, conditional value-at-risk (CVaR), diversification-by-sector and buy-in thresholds constraints. The model is obtained using a binary scenario tree that is constructed with monthly returns of the stocks from the S&P 500. We solve these models with a MATLAB based Mixed Integer Linear and Nonlinear Optimizer (MILANO). Numerical results show that we can solve small to medium-sized instances successfully, and we provide a substantial improvement in runtimes using warmstarts in outer approximation algorithm.","PeriodicalId":365755,"journal":{"name":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Period Portfolio Optimization Model with Cone Constraints and Discrete Decisions\",\"authors\":\"Ümit Sağlam, Hande Y. Benson\",\"doi\":\"10.2139/ssrn.2932567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we consider multi-period portfolio optimization model that is formulated as a mixed-integer second-order cone programming problems (MISOCPs). The Markowitz (1952) mean/variance framework has been extended by including transaction costs, conditional value-at-risk (CVaR), diversification-by-sector and buy-in thresholds constraints. The model is obtained using a binary scenario tree that is constructed with monthly returns of the stocks from the S&P 500. We solve these models with a MATLAB based Mixed Integer Linear and Nonlinear Optimizer (MILANO). Numerical results show that we can solve small to medium-sized instances successfully, and we provide a substantial improvement in runtimes using warmstarts in outer approximation algorithm.\",\"PeriodicalId\":365755,\"journal\":{\"name\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2932567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2932567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Period Portfolio Optimization Model with Cone Constraints and Discrete Decisions
In this study, we consider multi-period portfolio optimization model that is formulated as a mixed-integer second-order cone programming problems (MISOCPs). The Markowitz (1952) mean/variance framework has been extended by including transaction costs, conditional value-at-risk (CVaR), diversification-by-sector and buy-in thresholds constraints. The model is obtained using a binary scenario tree that is constructed with monthly returns of the stocks from the S&P 500. We solve these models with a MATLAB based Mixed Integer Linear and Nonlinear Optimizer (MILANO). Numerical results show that we can solve small to medium-sized instances successfully, and we provide a substantial improvement in runtimes using warmstarts in outer approximation algorithm.