{"title":"动机同源理论的同源下降","authors":"Thomas H. Geisser","doi":"10.4310/HHA.2014.V16.N2.A2","DOIUrl":null,"url":null,"abstract":"We show that motivic homology, motivic Borel-Moore homology and higher Chow groups satisfy homological descent for hyperenvelopes, and l-hyperenvelopes after inverting l.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Homological Descent for Motivic Homology Theories\",\"authors\":\"Thomas H. Geisser\",\"doi\":\"10.4310/HHA.2014.V16.N2.A2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that motivic homology, motivic Borel-Moore homology and higher Chow groups satisfy homological descent for hyperenvelopes, and l-hyperenvelopes after inverting l.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/HHA.2014.V16.N2.A2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/HHA.2014.V16.N2.A2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that motivic homology, motivic Borel-Moore homology and higher Chow groups satisfy homological descent for hyperenvelopes, and l-hyperenvelopes after inverting l.