{"title":"燃气轮机离心压缩机高分辨率ransr - fvdm设计方案的数值模拟","authors":"CH. V. K. N. S. N. Moorthy, V. Srinivas","doi":"10.5772/INTECHOPEN.72098","DOIUrl":null,"url":null,"abstract":"The aero-thermodynamic design and performance of a compressor need to conquer many vital challenges like it is a gas-driven turbo-machinery component, involvement of extensive iterative process for the convergence of the design, enormous design complexity due to three-dimensional flow phenomena, and multiflow physics embedded within a dynamic state-of-the-art. In this chapter, a strong attempt is made to address the above-cited techni- cal issues to achieve an optimized design and performance of a centrifugal compressor with backward swept blade profile producing total pressure ratio of 5.4 with an ingested mass flow rate of 5.73 kg/s. A mean-line design methodology was implemented to configure sizing of the compressor. An optimum grid size was well validated by carrying out compu- tational analysis with three different mesh sizes within the same framework. Finally, a detailed three-dimensional numerical simulation was performed using Reynolds-averaged Navier-Stokes equations based on finite volume discretization method (RANS-FVDM) scheme. Consequently, the polytropic efficiency, total-to-total efficiency, stagnation pressure ratio at a fixed rotational speed, and the overall design and aero-thermodynamic performance of the centrifugal compressor are validated.","PeriodicalId":103650,"journal":{"name":"Numerical Simulations in Engineering and Science","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulations of a High-Resolution RANS-FVDM Scheme for the Design of a Gas Turbine Centrifugal Compressor\",\"authors\":\"CH. V. K. N. S. N. Moorthy, V. Srinivas\",\"doi\":\"10.5772/INTECHOPEN.72098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aero-thermodynamic design and performance of a compressor need to conquer many vital challenges like it is a gas-driven turbo-machinery component, involvement of extensive iterative process for the convergence of the design, enormous design complexity due to three-dimensional flow phenomena, and multiflow physics embedded within a dynamic state-of-the-art. In this chapter, a strong attempt is made to address the above-cited techni- cal issues to achieve an optimized design and performance of a centrifugal compressor with backward swept blade profile producing total pressure ratio of 5.4 with an ingested mass flow rate of 5.73 kg/s. A mean-line design methodology was implemented to configure sizing of the compressor. An optimum grid size was well validated by carrying out compu- tational analysis with three different mesh sizes within the same framework. Finally, a detailed three-dimensional numerical simulation was performed using Reynolds-averaged Navier-Stokes equations based on finite volume discretization method (RANS-FVDM) scheme. Consequently, the polytropic efficiency, total-to-total efficiency, stagnation pressure ratio at a fixed rotational speed, and the overall design and aero-thermodynamic performance of the centrifugal compressor are validated.\",\"PeriodicalId\":103650,\"journal\":{\"name\":\"Numerical Simulations in Engineering and Science\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Simulations in Engineering and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.72098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Simulations in Engineering and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.72098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Simulations of a High-Resolution RANS-FVDM Scheme for the Design of a Gas Turbine Centrifugal Compressor
The aero-thermodynamic design and performance of a compressor need to conquer many vital challenges like it is a gas-driven turbo-machinery component, involvement of extensive iterative process for the convergence of the design, enormous design complexity due to three-dimensional flow phenomena, and multiflow physics embedded within a dynamic state-of-the-art. In this chapter, a strong attempt is made to address the above-cited techni- cal issues to achieve an optimized design and performance of a centrifugal compressor with backward swept blade profile producing total pressure ratio of 5.4 with an ingested mass flow rate of 5.73 kg/s. A mean-line design methodology was implemented to configure sizing of the compressor. An optimum grid size was well validated by carrying out compu- tational analysis with three different mesh sizes within the same framework. Finally, a detailed three-dimensional numerical simulation was performed using Reynolds-averaged Navier-Stokes equations based on finite volume discretization method (RANS-FVDM) scheme. Consequently, the polytropic efficiency, total-to-total efficiency, stagnation pressure ratio at a fixed rotational speed, and the overall design and aero-thermodynamic performance of the centrifugal compressor are validated.