C. Ton‐That, T. Huynh, L. L. Lem, A. Kuramata, M. Phillips
{"title":"β - ga2o3单晶中载流子复合动力学(会议报告)","authors":"C. Ton‐That, T. Huynh, L. L. Lem, A. Kuramata, M. Phillips","doi":"10.1117/12.2518229","DOIUrl":null,"url":null,"abstract":"We used temperature-resolved cathodoluminescence to determine the characteristics of luminescence bands and carrier dynamics in edge-defined film-fed grown (EFG) beta-Ga2O3 single crystals synthesized by Tamura Corporation. The crystal is nominally undoped and has a (-201) surface orientation. The main impurities are Si, Ir, Al and Fe, with [Fe] ~ 10^17 cm-3 verified by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The CL emission was found to be dominated by a broad UV emission peaked at 3.40 eV, which exhibits strong quenching with increasing temperature; however, its spectral shape and energy position remain virtually unchanged up to 500 K. Depth-resolved analysis reveals the luminescence spectrum is independent of sampling depth. We observed a super-linear increase of CL intensity with excitation density; this kinetics of carrier recombination can be explained in terms of carrier trapping and charge transfer at Fe3+/2+ centers. The temperature-dependent properties of this UV band were found to be consistent with weakly bound electrons in self-trapped excitons with an activation energy of 48 +/- 10 meV. In addition to the self-trapped exciton emission, a blue luminescence (BL) band is shown to be related to a donor-like defect, which increases significantly in concentration after remote hydrogen plasma treatment. The point defect responsible for the BL, likely an oxygen vacancy or a complex, is strongly coupled to the lattice with a Huang-Rhys factor S = 7.3.","PeriodicalId":106257,"journal":{"name":"Oxide-based Materials and Devices X","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetics of charge carrier recombination in beta-Ga2O3 single crystals (Conference Presentation)\",\"authors\":\"C. Ton‐That, T. Huynh, L. L. Lem, A. Kuramata, M. Phillips\",\"doi\":\"10.1117/12.2518229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We used temperature-resolved cathodoluminescence to determine the characteristics of luminescence bands and carrier dynamics in edge-defined film-fed grown (EFG) beta-Ga2O3 single crystals synthesized by Tamura Corporation. The crystal is nominally undoped and has a (-201) surface orientation. The main impurities are Si, Ir, Al and Fe, with [Fe] ~ 10^17 cm-3 verified by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The CL emission was found to be dominated by a broad UV emission peaked at 3.40 eV, which exhibits strong quenching with increasing temperature; however, its spectral shape and energy position remain virtually unchanged up to 500 K. Depth-resolved analysis reveals the luminescence spectrum is independent of sampling depth. We observed a super-linear increase of CL intensity with excitation density; this kinetics of carrier recombination can be explained in terms of carrier trapping and charge transfer at Fe3+/2+ centers. The temperature-dependent properties of this UV band were found to be consistent with weakly bound electrons in self-trapped excitons with an activation energy of 48 +/- 10 meV. In addition to the self-trapped exciton emission, a blue luminescence (BL) band is shown to be related to a donor-like defect, which increases significantly in concentration after remote hydrogen plasma treatment. The point defect responsible for the BL, likely an oxygen vacancy or a complex, is strongly coupled to the lattice with a Huang-Rhys factor S = 7.3.\",\"PeriodicalId\":106257,\"journal\":{\"name\":\"Oxide-based Materials and Devices X\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxide-based Materials and Devices X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2518229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxide-based Materials and Devices X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2518229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinetics of charge carrier recombination in beta-Ga2O3 single crystals (Conference Presentation)
We used temperature-resolved cathodoluminescence to determine the characteristics of luminescence bands and carrier dynamics in edge-defined film-fed grown (EFG) beta-Ga2O3 single crystals synthesized by Tamura Corporation. The crystal is nominally undoped and has a (-201) surface orientation. The main impurities are Si, Ir, Al and Fe, with [Fe] ~ 10^17 cm-3 verified by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The CL emission was found to be dominated by a broad UV emission peaked at 3.40 eV, which exhibits strong quenching with increasing temperature; however, its spectral shape and energy position remain virtually unchanged up to 500 K. Depth-resolved analysis reveals the luminescence spectrum is independent of sampling depth. We observed a super-linear increase of CL intensity with excitation density; this kinetics of carrier recombination can be explained in terms of carrier trapping and charge transfer at Fe3+/2+ centers. The temperature-dependent properties of this UV band were found to be consistent with weakly bound electrons in self-trapped excitons with an activation energy of 48 +/- 10 meV. In addition to the self-trapped exciton emission, a blue luminescence (BL) band is shown to be related to a donor-like defect, which increases significantly in concentration after remote hydrogen plasma treatment. The point defect responsible for the BL, likely an oxygen vacancy or a complex, is strongly coupled to the lattice with a Huang-Rhys factor S = 7.3.