V. Kiranmayee, Srishti Ranjan, J. Shreyansh, Shylesh Suresh, K. Ranjini
{"title":"早期乳腺癌的分层研究","authors":"V. Kiranmayee, Srishti Ranjan, J. Shreyansh, Shylesh Suresh, K. Ranjini","doi":"10.1109/ICONAT53423.2022.9726123","DOIUrl":null,"url":null,"abstract":"Classifying breast cancer in its preliminary stages is done with the help of machine learning and the concept of Transfer Learning Algorithm. Here, the classification is done by labeling the tumor as benign or malignant. The machine learning algorithms are implemented by using the scikit library in which transfer learning is also available. The algorithm completely depends upon the dataset that's run through it and the accuracy of the same. To get the best result, the usage of a pre-trained model approach will bolster the rate of accuracy. Once the algorithm is run, the desired result would be the algorithm predicting if the tumor is benign or malignant so the patient can get the most optimal care.","PeriodicalId":377501,"journal":{"name":"2022 International Conference for Advancement in Technology (ICONAT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stratification of Breast Cancer in it's Preliminary Stages\",\"authors\":\"V. Kiranmayee, Srishti Ranjan, J. Shreyansh, Shylesh Suresh, K. Ranjini\",\"doi\":\"10.1109/ICONAT53423.2022.9726123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classifying breast cancer in its preliminary stages is done with the help of machine learning and the concept of Transfer Learning Algorithm. Here, the classification is done by labeling the tumor as benign or malignant. The machine learning algorithms are implemented by using the scikit library in which transfer learning is also available. The algorithm completely depends upon the dataset that's run through it and the accuracy of the same. To get the best result, the usage of a pre-trained model approach will bolster the rate of accuracy. Once the algorithm is run, the desired result would be the algorithm predicting if the tumor is benign or malignant so the patient can get the most optimal care.\",\"PeriodicalId\":377501,\"journal\":{\"name\":\"2022 International Conference for Advancement in Technology (ICONAT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference for Advancement in Technology (ICONAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONAT53423.2022.9726123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference for Advancement in Technology (ICONAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONAT53423.2022.9726123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stratification of Breast Cancer in it's Preliminary Stages
Classifying breast cancer in its preliminary stages is done with the help of machine learning and the concept of Transfer Learning Algorithm. Here, the classification is done by labeling the tumor as benign or malignant. The machine learning algorithms are implemented by using the scikit library in which transfer learning is also available. The algorithm completely depends upon the dataset that's run through it and the accuracy of the same. To get the best result, the usage of a pre-trained model approach will bolster the rate of accuracy. Once the algorithm is run, the desired result would be the algorithm predicting if the tumor is benign or malignant so the patient can get the most optimal care.