国家世界风险与气候风险指数的聚类应用与评价

Nazmiye Eligüzel, S. Aydoğan, Ibrahim Miraç Eligüzel
{"title":"国家世界风险与气候风险指数的聚类应用与评价","authors":"Nazmiye Eligüzel, S. Aydoğan, Ibrahim Miraç Eligüzel","doi":"10.18100/ijamec.1217399","DOIUrl":null,"url":null,"abstract":"Societies take various initiatives to reduce the impact of natural disasters. Unfortunately, certain nations and regions are better suited than others to finding solutions to the problem, whether for political, cultural, economic, or other factors. This paper deals with the cluster analysis of 170 countries based on world risk index and climate risk index data. We use the k-means approach for clustering in sequential stages of this work. Specifically, we first carry out both the elbow method and silhouette scores to determine the number of clusters. Then clustering analysis is carried out, taking into account the World Risk Index, which includes risks of both exposure and vulnerability. Second, the Climate Risk Index is implemented into the first stage results by clustering countries after determining the number of clusters. Lastly, statistical analyses on the change of clusters for exposure, vulnerability, and climate risk are investigated and discussed in detail. Taken together, each of the risk elements like earthquake, tsunami, socioeconomic development, health care capability, etc. differs by nation. Clusters of countries with similar risks are reported. When the climate risk index is included in the evaluation, the number of clusters increases. The Climate Risk Index has been determined as a variable that cannot be ignored when countries are clustered according to their risk profiles.","PeriodicalId":120305,"journal":{"name":"International Journal of Applied Mathematics Electronics and Computers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering Application and Evaluation of the Countries' Word Risk and Climate Risk Indices\",\"authors\":\"Nazmiye Eligüzel, S. Aydoğan, Ibrahim Miraç Eligüzel\",\"doi\":\"10.18100/ijamec.1217399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Societies take various initiatives to reduce the impact of natural disasters. Unfortunately, certain nations and regions are better suited than others to finding solutions to the problem, whether for political, cultural, economic, or other factors. This paper deals with the cluster analysis of 170 countries based on world risk index and climate risk index data. We use the k-means approach for clustering in sequential stages of this work. Specifically, we first carry out both the elbow method and silhouette scores to determine the number of clusters. Then clustering analysis is carried out, taking into account the World Risk Index, which includes risks of both exposure and vulnerability. Second, the Climate Risk Index is implemented into the first stage results by clustering countries after determining the number of clusters. Lastly, statistical analyses on the change of clusters for exposure, vulnerability, and climate risk are investigated and discussed in detail. Taken together, each of the risk elements like earthquake, tsunami, socioeconomic development, health care capability, etc. differs by nation. Clusters of countries with similar risks are reported. When the climate risk index is included in the evaluation, the number of clusters increases. The Climate Risk Index has been determined as a variable that cannot be ignored when countries are clustered according to their risk profiles.\",\"PeriodicalId\":120305,\"journal\":{\"name\":\"International Journal of Applied Mathematics Electronics and Computers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics Electronics and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18100/ijamec.1217399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics Electronics and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18100/ijamec.1217399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社会采取各种措施减少自然灾害的影响。不幸的是,某些国家和地区比其他国家和地区更适合寻找解决问题的办法,无论是出于政治、文化、经济还是其他因素。本文基于世界风险指数和气候风险指数数据,对170个国家进行了聚类分析。我们在这项工作的连续阶段使用k-means方法进行聚类。具体来说,我们首先采用肘部法和轮廓评分来确定聚类的数量。然后考虑世界风险指数(World Risk Index)进行聚类分析,其中包括暴露风险和脆弱性风险。其次,在确定聚类数量后,将气候风险指数通过聚类国家实施到第一阶段结果中。最后,对暴露度、脆弱性和气候风险聚类的变化进行了统计分析。总的来说,地震、海啸、社会经济发展、卫生保健能力等每一个风险因素都因国家而异。报告了具有类似风险的国家群。当将气候风险指数纳入评价时,聚类数量增加。气候风险指数已被确定为一个变量,在根据各国的风险概况对其进行聚类时,该变量不可忽视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering Application and Evaluation of the Countries' Word Risk and Climate Risk Indices
Societies take various initiatives to reduce the impact of natural disasters. Unfortunately, certain nations and regions are better suited than others to finding solutions to the problem, whether for political, cultural, economic, or other factors. This paper deals with the cluster analysis of 170 countries based on world risk index and climate risk index data. We use the k-means approach for clustering in sequential stages of this work. Specifically, we first carry out both the elbow method and silhouette scores to determine the number of clusters. Then clustering analysis is carried out, taking into account the World Risk Index, which includes risks of both exposure and vulnerability. Second, the Climate Risk Index is implemented into the first stage results by clustering countries after determining the number of clusters. Lastly, statistical analyses on the change of clusters for exposure, vulnerability, and climate risk are investigated and discussed in detail. Taken together, each of the risk elements like earthquake, tsunami, socioeconomic development, health care capability, etc. differs by nation. Clusters of countries with similar risks are reported. When the climate risk index is included in the evaluation, the number of clusters increases. The Climate Risk Index has been determined as a variable that cannot be ignored when countries are clustered according to their risk profiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信