关于Maskit的平面性定理的注解

B. Bowditch
{"title":"关于Maskit的平面性定理的注解","authors":"B. Bowditch","doi":"10.4171/lem/1019","DOIUrl":null,"url":null,"abstract":". We give an account of the Planarity Theorem of Maskit. This gives a classification of finitely generated groups acting effectively properly discontinuously by orientation-preserving homeomorphisms on a planar surface. One can also realise such groups as kleinian function groups. We also explain how one can give another proof of the planarity theorem using Dunwoody’s theory of tracks.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Notes on Maskit’s Planarity Theorem\",\"authors\":\"B. Bowditch\",\"doi\":\"10.4171/lem/1019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We give an account of the Planarity Theorem of Maskit. This gives a classification of finitely generated groups acting effectively properly discontinuously by orientation-preserving homeomorphisms on a planar surface. One can also realise such groups as kleinian function groups. We also explain how one can give another proof of the planarity theorem using Dunwoody’s theory of tracks.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/lem/1019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/1019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

. 给出了Maskit的平面性定理。给出了平面上由保向同胚有效地不连续作用的有限生成群的分类。我们也可以认识到这样的群,如克莱因函数群。我们还解释了如何用邓伍迪的轨迹理论给出平面性定理的另一个证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Notes on Maskit’s Planarity Theorem
. We give an account of the Planarity Theorem of Maskit. This gives a classification of finitely generated groups acting effectively properly discontinuously by orientation-preserving homeomorphisms on a planar surface. One can also realise such groups as kleinian function groups. We also explain how one can give another proof of the planarity theorem using Dunwoody’s theory of tracks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信