I. Tuzov, Pablo Andreu, Laura Medina, Tomás Picornell, A. Robles, P. López, J. Flich, Carles Hernández
{"title":"利用寄存器文件随机化提高冗余执行的鲁棒性","authors":"I. Tuzov, Pablo Andreu, Laura Medina, Tomás Picornell, A. Robles, P. López, J. Flich, Carles Hernández","doi":"10.1109/ICCAD51958.2021.9643466","DOIUrl":null,"url":null,"abstract":"Staggered Redundant execution (SRE) is a fault-tolerance mechanism that has been widely deployed in the context of safety-critical applications. SRE not only protects the system in the presence of faults but also helps relaxing safety requirements of individual elements. However, in this paper, we show that SRE does not effectively protect the system against a wide range of faults and thus, new mechanisms to increase the diversity of homogeneous cores are needed. In this paper, we propose Register File Randomization (RFR), a low-cost diversity mechanism that significantly increases the robustness of homogeneous multicores in front of common-cause faults (CCFs) and register file wearout. Our results show that RFR completely removes the failure rate for register file CCFs for certain workloads and reduces by a factor of 5X the impact of stress related register file aging for the workloads analysed. Our implementation requires less than 50 RTL lines of code and the area (FPGA logic) overhead of RFR is less than 0.2% of a 64-bit RISC-V core FPGA implementation.","PeriodicalId":370791,"journal":{"name":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Robustness of Redundant Execution with Register File Randomization\",\"authors\":\"I. Tuzov, Pablo Andreu, Laura Medina, Tomás Picornell, A. Robles, P. López, J. Flich, Carles Hernández\",\"doi\":\"10.1109/ICCAD51958.2021.9643466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Staggered Redundant execution (SRE) is a fault-tolerance mechanism that has been widely deployed in the context of safety-critical applications. SRE not only protects the system in the presence of faults but also helps relaxing safety requirements of individual elements. However, in this paper, we show that SRE does not effectively protect the system against a wide range of faults and thus, new mechanisms to increase the diversity of homogeneous cores are needed. In this paper, we propose Register File Randomization (RFR), a low-cost diversity mechanism that significantly increases the robustness of homogeneous multicores in front of common-cause faults (CCFs) and register file wearout. Our results show that RFR completely removes the failure rate for register file CCFs for certain workloads and reduces by a factor of 5X the impact of stress related register file aging for the workloads analysed. Our implementation requires less than 50 RTL lines of code and the area (FPGA logic) overhead of RFR is less than 0.2% of a 64-bit RISC-V core FPGA implementation.\",\"PeriodicalId\":370791,\"journal\":{\"name\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD51958.2021.9643466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD51958.2021.9643466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving the Robustness of Redundant Execution with Register File Randomization
Staggered Redundant execution (SRE) is a fault-tolerance mechanism that has been widely deployed in the context of safety-critical applications. SRE not only protects the system in the presence of faults but also helps relaxing safety requirements of individual elements. However, in this paper, we show that SRE does not effectively protect the system against a wide range of faults and thus, new mechanisms to increase the diversity of homogeneous cores are needed. In this paper, we propose Register File Randomization (RFR), a low-cost diversity mechanism that significantly increases the robustness of homogeneous multicores in front of common-cause faults (CCFs) and register file wearout. Our results show that RFR completely removes the failure rate for register file CCFs for certain workloads and reduces by a factor of 5X the impact of stress related register file aging for the workloads analysed. Our implementation requires less than 50 RTL lines of code and the area (FPGA logic) overhead of RFR is less than 0.2% of a 64-bit RISC-V core FPGA implementation.