基于个人计算机的低成本放射学诊断专家系统及图像和文本数据库

David Kowarski
{"title":"基于个人计算机的低成本放射学诊断专家系统及图像和文本数据库","authors":"David Kowarski","doi":"10.1109/CBMSYS.1990.109412","DOIUrl":null,"url":null,"abstract":"A program for radiology differential diagnosis (DDX) using Prolog, a programming language for artificial intelligence applications is developed. The program uses a probabilistic model based on Bayes' theorem to arrive at and rank the relative probabilities of possible diagnosis. This model uses the prevalence of diagnoses and conditional probabilities of diagnostic features. It treats nonindependent diagnostic features by defining compound conditional probabilities to describe the interdependence of conditional probabilities. The program has an iterative mouse-controlled menu-driven interface that makes selecting more diagnostic features yield shorter DDX's. This process can be reversed by deselecting features, allowing what-if experimentation. The program ranks the DDX by relative probability and allows reviewing images or text descriptions of each diagnosis in the list. The program creates separate databases that users may alter, using terminology of their choosing for diagnoses and diagnostic features.<<ETX>>","PeriodicalId":365366,"journal":{"name":"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems","volume":"38 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A low-cost personal computer-based radiology diagnostic expert system and image and text database\",\"authors\":\"David Kowarski\",\"doi\":\"10.1109/CBMSYS.1990.109412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A program for radiology differential diagnosis (DDX) using Prolog, a programming language for artificial intelligence applications is developed. The program uses a probabilistic model based on Bayes' theorem to arrive at and rank the relative probabilities of possible diagnosis. This model uses the prevalence of diagnoses and conditional probabilities of diagnostic features. It treats nonindependent diagnostic features by defining compound conditional probabilities to describe the interdependence of conditional probabilities. The program has an iterative mouse-controlled menu-driven interface that makes selecting more diagnostic features yield shorter DDX's. This process can be reversed by deselecting features, allowing what-if experimentation. The program ranks the DDX by relative probability and allows reviewing images or text descriptions of each diagnosis in the list. The program creates separate databases that users may alter, using terminology of their choosing for diagnoses and diagnostic features.<<ETX>>\",\"PeriodicalId\":365366,\"journal\":{\"name\":\"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems\",\"volume\":\"38 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMSYS.1990.109412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings. Third Annual IEEE Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMSYS.1990.109412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用人工智能应用程序编程语言Prolog开发了放射学鉴别诊断(DDX)程序。该程序使用基于贝叶斯定理的概率模型来得出可能诊断的相对概率并对其进行排序。该模型使用诊断的普遍性和诊断特征的条件概率。它通过定义复合条件概率来描述条件概率的相互依赖关系,从而处理非独立的诊断特征。该程序有一个迭代的鼠标控制菜单驱动界面,使选择更多的诊断功能产生更短的DDX。这个过程可以通过取消选择功能来逆转,允许进行假设实验。该程序根据相对概率对DDX进行排名,并允许查看列表中每个诊断的图像或文本描述。该程序创建单独的数据库,用户可以修改,使用他们选择的诊断和诊断功能的术语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A low-cost personal computer-based radiology diagnostic expert system and image and text database
A program for radiology differential diagnosis (DDX) using Prolog, a programming language for artificial intelligence applications is developed. The program uses a probabilistic model based on Bayes' theorem to arrive at and rank the relative probabilities of possible diagnosis. This model uses the prevalence of diagnoses and conditional probabilities of diagnostic features. It treats nonindependent diagnostic features by defining compound conditional probabilities to describe the interdependence of conditional probabilities. The program has an iterative mouse-controlled menu-driven interface that makes selecting more diagnostic features yield shorter DDX's. This process can be reversed by deselecting features, allowing what-if experimentation. The program ranks the DDX by relative probability and allows reviewing images or text descriptions of each diagnosis in the list. The program creates separate databases that users may alter, using terminology of their choosing for diagnoses and diagnostic features.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信