改进离散拉格朗日乘子搜索求解SAT难题的性能

Yi Shang, B. Wah
{"title":"改进离散拉格朗日乘子搜索求解SAT难题的性能","authors":"Yi Shang, B. Wah","doi":"10.1109/TAI.1998.744839","DOIUrl":null,"url":null,"abstract":"We have proposed the discrete Lagrange-multiplier method (DLM) to solve satisfiability problems. Instead of restarting from a new starting point when the search reaches a local minimum in the objective space, the Lagrange multipliers of violated constraints in DLM provide a force to lead the search out of the local minimum and move it in a direction provided by the multipliers. We present the theoretical foundation of DLM for solving SAT problems and discuss some implementation issues. We study the performance of DLM on a set of hard satisfiability benchmark instances, and show the importance of dynamic scaling of Lagrange multipliers and the flat-move strategy. We show that DLM can perform better than competing local-search methods when its parameters are selected properly.","PeriodicalId":424568,"journal":{"name":"Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294)","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Improving the performance of discrete Lagrange-multiplier search for solving hard SAT problems\",\"authors\":\"Yi Shang, B. Wah\",\"doi\":\"10.1109/TAI.1998.744839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have proposed the discrete Lagrange-multiplier method (DLM) to solve satisfiability problems. Instead of restarting from a new starting point when the search reaches a local minimum in the objective space, the Lagrange multipliers of violated constraints in DLM provide a force to lead the search out of the local minimum and move it in a direction provided by the multipliers. We present the theoretical foundation of DLM for solving SAT problems and discuss some implementation issues. We study the performance of DLM on a set of hard satisfiability benchmark instances, and show the importance of dynamic scaling of Lagrange multipliers and the flat-move strategy. We show that DLM can perform better than competing local-search methods when its parameters are selected properly.\",\"PeriodicalId\":424568,\"journal\":{\"name\":\"Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294)\",\"volume\":\"167 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1998.744839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1998.744839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了离散拉格朗日乘子法(DLM)来解决可满足性问题。DLM中违反约束的拉格朗日乘子提供了一种力,将搜索从局部最小值引导到乘子提供的方向,而不是当搜索达到目标空间中的局部最小值时从新的起点重新开始。我们提出了解决SAT问题的DLM的理论基础,并讨论了一些实现问题。我们研究了DLM在一组硬满足性基准实例上的性能,并证明了拉格朗日乘子的动态缩放和平移策略的重要性。我们证明了当DLM的参数选择正确时,它可以比竞争的局部搜索方法执行得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the performance of discrete Lagrange-multiplier search for solving hard SAT problems
We have proposed the discrete Lagrange-multiplier method (DLM) to solve satisfiability problems. Instead of restarting from a new starting point when the search reaches a local minimum in the objective space, the Lagrange multipliers of violated constraints in DLM provide a force to lead the search out of the local minimum and move it in a direction provided by the multipliers. We present the theoretical foundation of DLM for solving SAT problems and discuss some implementation issues. We study the performance of DLM on a set of hard satisfiability benchmark instances, and show the importance of dynamic scaling of Lagrange multipliers and the flat-move strategy. We show that DLM can perform better than competing local-search methods when its parameters are selected properly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信