{"title":"无线网状网络中具有物理干扰的高效分布式调度的尖叫方法","authors":"Gurashish Singh Brar, D. Blough, P. Santi","doi":"10.1109/ICDCS.2008.104","DOIUrl":null,"url":null,"abstract":"It is known that CSMA/CA channel access schemes are not well suited to meet the high traffic demand of wireless mesh networks. One possible way to increase traffic carrying capacity is to use a spatial TDMA (STDMA) approach in conjunction with the physical interference model, which allows more aggressive scheduling than the protocol interference model on which CSMA/CA is based. While an efficient centralized solution for STDMA with physical interference has been recently proposed, no satisfactory distributed approaches have been introduced so far. In this paper, we first prove that no localized distributed algorithm can solve the problem of building a feasible schedule under the physical interference model. Motivated by this, we design a global primitive, called SCREAM, which is used to verify the feasibility of a schedule during an iterative distributed scheduling procedure. Based on this primitive, we present two distributed protocols for efficient, distributed scheduling under the physical interference model, and we prove an approximation bound for one of the protocols. We also present extensive packet-level simulation results, which show that our protocols achieve schedule lengths very close to those of the centralized algorithm and have running times that are practical for mesh networks.","PeriodicalId":240205,"journal":{"name":"2008 The 28th International Conference on Distributed Computing Systems","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"The SCREAM Approach for Efficient Distributed Scheduling with Physical Interference in Wireless Mesh Networks\",\"authors\":\"Gurashish Singh Brar, D. Blough, P. Santi\",\"doi\":\"10.1109/ICDCS.2008.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that CSMA/CA channel access schemes are not well suited to meet the high traffic demand of wireless mesh networks. One possible way to increase traffic carrying capacity is to use a spatial TDMA (STDMA) approach in conjunction with the physical interference model, which allows more aggressive scheduling than the protocol interference model on which CSMA/CA is based. While an efficient centralized solution for STDMA with physical interference has been recently proposed, no satisfactory distributed approaches have been introduced so far. In this paper, we first prove that no localized distributed algorithm can solve the problem of building a feasible schedule under the physical interference model. Motivated by this, we design a global primitive, called SCREAM, which is used to verify the feasibility of a schedule during an iterative distributed scheduling procedure. Based on this primitive, we present two distributed protocols for efficient, distributed scheduling under the physical interference model, and we prove an approximation bound for one of the protocols. We also present extensive packet-level simulation results, which show that our protocols achieve schedule lengths very close to those of the centralized algorithm and have running times that are practical for mesh networks.\",\"PeriodicalId\":240205,\"journal\":{\"name\":\"2008 The 28th International Conference on Distributed Computing Systems\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 The 28th International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2008.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The 28th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2008.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The SCREAM Approach for Efficient Distributed Scheduling with Physical Interference in Wireless Mesh Networks
It is known that CSMA/CA channel access schemes are not well suited to meet the high traffic demand of wireless mesh networks. One possible way to increase traffic carrying capacity is to use a spatial TDMA (STDMA) approach in conjunction with the physical interference model, which allows more aggressive scheduling than the protocol interference model on which CSMA/CA is based. While an efficient centralized solution for STDMA with physical interference has been recently proposed, no satisfactory distributed approaches have been introduced so far. In this paper, we first prove that no localized distributed algorithm can solve the problem of building a feasible schedule under the physical interference model. Motivated by this, we design a global primitive, called SCREAM, which is used to verify the feasibility of a schedule during an iterative distributed scheduling procedure. Based on this primitive, we present two distributed protocols for efficient, distributed scheduling under the physical interference model, and we prove an approximation bound for one of the protocols. We also present extensive packet-level simulation results, which show that our protocols achieve schedule lengths very close to those of the centralized algorithm and have running times that are practical for mesh networks.