基于长内存依赖性的DDoS攻击检测统计模型

T. Andrysiak, Ł. Saganowski, M. Maszewski, Piotr Grad
{"title":"基于长内存依赖性的DDoS攻击检测统计模型","authors":"T. Andrysiak, Ł. Saganowski, M. Maszewski, Piotr Grad","doi":"10.1515/ipc-2015-0042","DOIUrl":null,"url":null,"abstract":"Abstract DDoS attacks detection method based on modelling the variability with the use of conditional average and variance in examined time series is proposed in this article. Variability predictions of the analyzed network traffic are realized by estimated statistical models with long-memory dependence ARFIMA, Adaptive ARFIMA, FIGARCH and Adaptive FIGARCH. We propose simple parameter estimation models with the use of maximum likelihood function. Selection of sparingly parameterized form of the models is realized by means of information criteria representing a compromise between brevity of representation and the extent of the prediction error. In the described method we propose using statistical relations between the forecasted and analyzed network traffic in order to detect abnormal behavior possibly being a result of a network attack. Performed experiments confirmed effectiveness of the analyzed method and cogency of the statistical models.","PeriodicalId":271906,"journal":{"name":"Image Processing & Communications","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Long-Memory Dependence Statistical Models for DDoS Attacks Detection\",\"authors\":\"T. Andrysiak, Ł. Saganowski, M. Maszewski, Piotr Grad\",\"doi\":\"10.1515/ipc-2015-0042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract DDoS attacks detection method based on modelling the variability with the use of conditional average and variance in examined time series is proposed in this article. Variability predictions of the analyzed network traffic are realized by estimated statistical models with long-memory dependence ARFIMA, Adaptive ARFIMA, FIGARCH and Adaptive FIGARCH. We propose simple parameter estimation models with the use of maximum likelihood function. Selection of sparingly parameterized form of the models is realized by means of information criteria representing a compromise between brevity of representation and the extent of the prediction error. In the described method we propose using statistical relations between the forecasted and analyzed network traffic in order to detect abnormal behavior possibly being a result of a network attack. Performed experiments confirmed effectiveness of the analyzed method and cogency of the statistical models.\",\"PeriodicalId\":271906,\"journal\":{\"name\":\"Image Processing & Communications\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image Processing & Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ipc-2015-0042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Processing & Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ipc-2015-0042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文提出了一种基于条件平均和方差对被检测时间序列的可变性建模的DDoS攻击检测方法。通过长记忆依赖性ARFIMA、自适应ARFIMA、FIGARCH和自适应FIGARCH估计统计模型实现了网络流量的变异性预测。我们提出了使用极大似然函数的简单参数估计模型。模型的参数化形式的选择是通过信息标准来实现的,这些信息标准代表了表示的简洁性和预测误差的程度之间的折衷。在所描述的方法中,我们提出利用预测和分析的网络流量之间的统计关系来检测可能是网络攻击的结果的异常行为。通过实验验证了分析方法的有效性和统计模型的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-Memory Dependence Statistical Models for DDoS Attacks Detection
Abstract DDoS attacks detection method based on modelling the variability with the use of conditional average and variance in examined time series is proposed in this article. Variability predictions of the analyzed network traffic are realized by estimated statistical models with long-memory dependence ARFIMA, Adaptive ARFIMA, FIGARCH and Adaptive FIGARCH. We propose simple parameter estimation models with the use of maximum likelihood function. Selection of sparingly parameterized form of the models is realized by means of information criteria representing a compromise between brevity of representation and the extent of the prediction error. In the described method we propose using statistical relations between the forecasted and analyzed network traffic in order to detect abnormal behavior possibly being a result of a network attack. Performed experiments confirmed effectiveness of the analyzed method and cogency of the statistical models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信