形式化蜘蛛图

J. Gil, J. Howse, S. Kent
{"title":"形式化蜘蛛图","authors":"J. Gil, J. Howse, S. Kent","doi":"10.1109/VL.1999.795884","DOIUrl":null,"url":null,"abstract":"Geared to complement UML and the specification of large software systems by non-mathematicians, spider diagrams are a visual language that generalizes the popular and intuitive Venn diagrams and Euler circles. The language design emphasizes scalability and expressiveness while retaining intuitiveness. In this paper, we describe spider diagrams from a mathematical standpoint and show how their formal semantics can be made in terms of logical expressions. We also claim that all spider diagrams are self-consistent.","PeriodicalId":113128,"journal":{"name":"Proceedings 1999 IEEE Symposium on Visual Languages","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Formalizing spider diagrams\",\"authors\":\"J. Gil, J. Howse, S. Kent\",\"doi\":\"10.1109/VL.1999.795884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geared to complement UML and the specification of large software systems by non-mathematicians, spider diagrams are a visual language that generalizes the popular and intuitive Venn diagrams and Euler circles. The language design emphasizes scalability and expressiveness while retaining intuitiveness. In this paper, we describe spider diagrams from a mathematical standpoint and show how their formal semantics can be made in terms of logical expressions. We also claim that all spider diagrams are self-consistent.\",\"PeriodicalId\":113128,\"journal\":{\"name\":\"Proceedings 1999 IEEE Symposium on Visual Languages\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1999 IEEE Symposium on Visual Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VL.1999.795884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1999 IEEE Symposium on Visual Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VL.1999.795884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

蜘蛛图是一种视觉语言,它概括了流行的直观的维恩图和欧拉圈,以补充UML和非数学家对大型软件系统的规范。语言设计强调可伸缩性和表现力,同时保持直观性。在本文中,我们从数学的角度描述了蜘蛛图,并展示了它们的形式语义是如何用逻辑表达式来表示的。我们还声称所有的蜘蛛图都是自洽的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formalizing spider diagrams
Geared to complement UML and the specification of large software systems by non-mathematicians, spider diagrams are a visual language that generalizes the popular and intuitive Venn diagrams and Euler circles. The language design emphasizes scalability and expressiveness while retaining intuitiveness. In this paper, we describe spider diagrams from a mathematical standpoint and show how their formal semantics can be made in terms of logical expressions. We also claim that all spider diagrams are self-consistent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信