基于脑血管变化的高血压早期预测CAD系统

Heba Kandil, A. Soliman, F. Taher, M. Ghazal, Mohiuddin Hadi, G. Giridharan, A. El-Baz
{"title":"基于脑血管变化的高血压早期预测CAD系统","authors":"Heba Kandil, A. Soliman, F. Taher, M. Ghazal, Mohiuddin Hadi, G. Giridharan, A. El-Baz","doi":"10.1109/IST48021.2019.9010179","DOIUrl":null,"url":null,"abstract":"Hypertension is a leading cause for mortality in the US and a significant contributor to many vascular and non vascular diseases. Previous literature reports suggest that specific cerebral vascular alterations precede the onset of hypertension. In this manuscript, we propose a magnetic resonance angiography (MRA)-based computer-aided-diagnosis (CAD) system for the early detection of hypertension. The steps of the proposed CAD system are: 1) preprocessing of the MRA input data to correct the bias resulting from the magnetic field, remove noise effects, reduce contrast non-uniformities, enhance homogeneity using a generalized Gauss-Markov random field (GGMRF), and normalize data to enhance the segmentation process, 2) delineating the cerebral vasculature using a deep 3-D convolutional neural network (CNN) automatically and accurately, 3) extraction of vascular features (cerebrovascular diameters and tortuosity) that are reported to change with the progression of hypertension and constructing the feature vectors, 4) using the feature vectors for classifying input data using a support vector machine (SVM) classifier. We report a 90% classification accuracy in distinguishing between normal and potential hypertensive subjects. These results demonstrate the efficacy of using the proposed vascular features to predict pre-hypertension or hypertension. Clinicians could track the alterations of these vascular features over time for people at risk of developing hypertension for optimal medical management and mitigate adverse events.","PeriodicalId":117219,"journal":{"name":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A CAD System for the Early Prediction of Hypertension based on Changes in Cerebral Vasculature\",\"authors\":\"Heba Kandil, A. Soliman, F. Taher, M. Ghazal, Mohiuddin Hadi, G. Giridharan, A. El-Baz\",\"doi\":\"10.1109/IST48021.2019.9010179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hypertension is a leading cause for mortality in the US and a significant contributor to many vascular and non vascular diseases. Previous literature reports suggest that specific cerebral vascular alterations precede the onset of hypertension. In this manuscript, we propose a magnetic resonance angiography (MRA)-based computer-aided-diagnosis (CAD) system for the early detection of hypertension. The steps of the proposed CAD system are: 1) preprocessing of the MRA input data to correct the bias resulting from the magnetic field, remove noise effects, reduce contrast non-uniformities, enhance homogeneity using a generalized Gauss-Markov random field (GGMRF), and normalize data to enhance the segmentation process, 2) delineating the cerebral vasculature using a deep 3-D convolutional neural network (CNN) automatically and accurately, 3) extraction of vascular features (cerebrovascular diameters and tortuosity) that are reported to change with the progression of hypertension and constructing the feature vectors, 4) using the feature vectors for classifying input data using a support vector machine (SVM) classifier. We report a 90% classification accuracy in distinguishing between normal and potential hypertensive subjects. These results demonstrate the efficacy of using the proposed vascular features to predict pre-hypertension or hypertension. Clinicians could track the alterations of these vascular features over time for people at risk of developing hypertension for optimal medical management and mitigate adverse events.\",\"PeriodicalId\":117219,\"journal\":{\"name\":\"2019 IEEE International Conference on Imaging Systems and Techniques (IST)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Imaging Systems and Techniques (IST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IST48021.2019.9010179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST48021.2019.9010179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在美国,高血压是导致死亡的主要原因,也是许多血管和非血管疾病的重要原因。先前的文献报道表明,高血压发病前有特定的脑血管改变。在这篇文章中,我们提出了一种基于磁共振血管造影(MRA)的计算机辅助诊断(CAD)系统,用于高血压的早期检测。建议的CAD系统的步骤如下:1)对MRA输入数据进行预处理,以纠正磁场造成的偏差,去除噪声影响,降低对比度不均匀性,使用广义高斯-马尔可夫随机场(GGMRF)增强均匀性,并对数据进行归一化,以增强分割过程;2)使用深度三维卷积神经网络(CNN)自动准确地描绘脑血管。3)提取报道的随高血压进展而变化的血管特征(脑血管直径和弯曲度)并构建特征向量;4)利用特征向量对输入数据进行支持向量机(SVM)分类器分类。我们报告在区分正常和潜在高血压受试者的分类准确率为90%。这些结果证明了使用提出的血管特征来预测高血压前期或高血压的有效性。临床医生可以追踪这些血管特征随时间的变化,为有高血压风险的人提供最佳的医疗管理和减轻不良事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A CAD System for the Early Prediction of Hypertension based on Changes in Cerebral Vasculature
Hypertension is a leading cause for mortality in the US and a significant contributor to many vascular and non vascular diseases. Previous literature reports suggest that specific cerebral vascular alterations precede the onset of hypertension. In this manuscript, we propose a magnetic resonance angiography (MRA)-based computer-aided-diagnosis (CAD) system for the early detection of hypertension. The steps of the proposed CAD system are: 1) preprocessing of the MRA input data to correct the bias resulting from the magnetic field, remove noise effects, reduce contrast non-uniformities, enhance homogeneity using a generalized Gauss-Markov random field (GGMRF), and normalize data to enhance the segmentation process, 2) delineating the cerebral vasculature using a deep 3-D convolutional neural network (CNN) automatically and accurately, 3) extraction of vascular features (cerebrovascular diameters and tortuosity) that are reported to change with the progression of hypertension and constructing the feature vectors, 4) using the feature vectors for classifying input data using a support vector machine (SVM) classifier. We report a 90% classification accuracy in distinguishing between normal and potential hypertensive subjects. These results demonstrate the efficacy of using the proposed vascular features to predict pre-hypertension or hypertension. Clinicians could track the alterations of these vascular features over time for people at risk of developing hypertension for optimal medical management and mitigate adverse events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信