人工神经网络预测识别印尼东部太阳能潜力

Dharma Aryani, S. Pranoto, Fajar Fajar, A. N. Intang, Firza Zulmi Rhamadhan
{"title":"人工神经网络预测识别印尼东部太阳能潜力","authors":"Dharma Aryani, S. Pranoto, Fajar Fajar, A. N. Intang, Firza Zulmi Rhamadhan","doi":"10.1109/ICPEA56918.2023.10093184","DOIUrl":null,"url":null,"abstract":"The geographic location of Indonesia which climates almost entirely tropical provides exclusive potential for solar energy all through the year. This paper performs identification and prediction of solar irradiance in Eastern area of Indonesia. Modeling and estimation approach is carried out by using Artificial Neural Network (ANN) algorithm. Datasets for training and testing are highly correlated parameters from NASA climatological database for 20 years of historical data. The results of training and testing procedures in ANN show high accuracy of solar modelling and prediction. The study produces spatial mapping of solar irradiance intensity for the monthly average solar irradiance of 174 districts in Eastern Indonesia region.","PeriodicalId":297829,"journal":{"name":"2023 IEEE 3rd International Conference in Power Engineering Applications (ICPEA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Neural Network Prediction to Identify Solar Energy Potential In Eastern Indonesia\",\"authors\":\"Dharma Aryani, S. Pranoto, Fajar Fajar, A. N. Intang, Firza Zulmi Rhamadhan\",\"doi\":\"10.1109/ICPEA56918.2023.10093184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The geographic location of Indonesia which climates almost entirely tropical provides exclusive potential for solar energy all through the year. This paper performs identification and prediction of solar irradiance in Eastern area of Indonesia. Modeling and estimation approach is carried out by using Artificial Neural Network (ANN) algorithm. Datasets for training and testing are highly correlated parameters from NASA climatological database for 20 years of historical data. The results of training and testing procedures in ANN show high accuracy of solar modelling and prediction. The study produces spatial mapping of solar irradiance intensity for the monthly average solar irradiance of 174 districts in Eastern Indonesia region.\",\"PeriodicalId\":297829,\"journal\":{\"name\":\"2023 IEEE 3rd International Conference in Power Engineering Applications (ICPEA)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 3rd International Conference in Power Engineering Applications (ICPEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPEA56918.2023.10093184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 3rd International Conference in Power Engineering Applications (ICPEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEA56918.2023.10093184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

印度尼西亚的地理位置几乎完全是热带气候,这为全年太阳能提供了独特的潜力。本文对印度尼西亚东部地区的太阳辐照度进行了识别和预测。采用人工神经网络(ANN)算法进行建模和估计。用于训练和测试的数据集是来自NASA气候数据库20年历史数据的高度相关参数。训练和测试结果表明,人工神经网络对太阳的模拟和预测具有较高的精度。该研究为印度尼西亚东部174个地区的月平均太阳辐照度绘制了太阳辐照度的空间分布图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Neural Network Prediction to Identify Solar Energy Potential In Eastern Indonesia
The geographic location of Indonesia which climates almost entirely tropical provides exclusive potential for solar energy all through the year. This paper performs identification and prediction of solar irradiance in Eastern area of Indonesia. Modeling and estimation approach is carried out by using Artificial Neural Network (ANN) algorithm. Datasets for training and testing are highly correlated parameters from NASA climatological database for 20 years of historical data. The results of training and testing procedures in ANN show high accuracy of solar modelling and prediction. The study produces spatial mapping of solar irradiance intensity for the monthly average solar irradiance of 174 districts in Eastern Indonesia region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信