{"title":"片上通信协议设计与验证的改进方法","authors":"P. Böhm, T. Melham","doi":"10.1109/FMCAD.2008.ECP.22","DOIUrl":null,"url":null,"abstract":"Modern computer systems rely more and more on on-chip communication protocols to exchange data. To meet performance requirements these protocols have become highly complex, which usually makes their formal verification infeasible with reasonable time and effort. We present a new refinement approach to on-chip communication protocols that combines design and verification together, interleaving them hand-in-hand. Our modeling framework consists of design steps and design transformations formalized as finite state machines. Given a verified design step, transformations are used to extend the system with advanced features. A design transformation ensures that the extended design is correct if the previous system is correct. This approach is illustrated by an arbiter-based master-slave communication system inspired by the AMBA high-performance bus architecture. Starting with a sequential protocol design, it is extended with pipelining and burst transfers. Transformations are generated from design constraints providing a basis for correctness-by-design of the derived system.","PeriodicalId":399042,"journal":{"name":"2008 Formal Methods in Computer-Aided Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Refinement Approach to Design and Verification of On-Chip Communication Protocols\",\"authors\":\"P. Böhm, T. Melham\",\"doi\":\"10.1109/FMCAD.2008.ECP.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern computer systems rely more and more on on-chip communication protocols to exchange data. To meet performance requirements these protocols have become highly complex, which usually makes their formal verification infeasible with reasonable time and effort. We present a new refinement approach to on-chip communication protocols that combines design and verification together, interleaving them hand-in-hand. Our modeling framework consists of design steps and design transformations formalized as finite state machines. Given a verified design step, transformations are used to extend the system with advanced features. A design transformation ensures that the extended design is correct if the previous system is correct. This approach is illustrated by an arbiter-based master-slave communication system inspired by the AMBA high-performance bus architecture. Starting with a sequential protocol design, it is extended with pipelining and burst transfers. Transformations are generated from design constraints providing a basis for correctness-by-design of the derived system.\",\"PeriodicalId\":399042,\"journal\":{\"name\":\"2008 Formal Methods in Computer-Aided Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Formal Methods in Computer-Aided Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMCAD.2008.ECP.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Formal Methods in Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMCAD.2008.ECP.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Refinement Approach to Design and Verification of On-Chip Communication Protocols
Modern computer systems rely more and more on on-chip communication protocols to exchange data. To meet performance requirements these protocols have become highly complex, which usually makes their formal verification infeasible with reasonable time and effort. We present a new refinement approach to on-chip communication protocols that combines design and verification together, interleaving them hand-in-hand. Our modeling framework consists of design steps and design transformations formalized as finite state machines. Given a verified design step, transformations are used to extend the system with advanced features. A design transformation ensures that the extended design is correct if the previous system is correct. This approach is illustrated by an arbiter-based master-slave communication system inspired by the AMBA high-performance bus architecture. Starting with a sequential protocol design, it is extended with pipelining and burst transfers. Transformations are generated from design constraints providing a basis for correctness-by-design of the derived system.