高温PEM燃料电池用磷酸掺杂聚苯并咪唑膜的研究进展

A. A. Tahrim, I. N. H. M. Amin
{"title":"高温PEM燃料电池用磷酸掺杂聚苯并咪唑膜的研究进展","authors":"A. A. Tahrim, I. N. H. M. Amin","doi":"10.11113/AMST.V23N1.136","DOIUrl":null,"url":null,"abstract":"High-temperature polymer electrolyte membrane fuel cell as a sustainable green technology has been developed throughout the years as it provides several benefits compared to Nafion-based fuel cells (e.g., CO tolerance, improved kinetic and enhance water management). Polybenzimidazole which one of the best membrane candidates was extensively studied due to excellent properties to be used in high-temperature application. Impregnating polybenzimidazole with phosphoric acid are most commonly practised as an electrolyte membrane in the PEMFC. In this paper, recent advancement of the existing literature regarding work revolving polybenzimidazole to improve the performance of phosphoric acid doped polybenzimidazole membrane for high-temperature polymer electrolyte membrane fuel cell are reviewed. Notable works such as using aluminium containing silicate (Al-Si), silicon carbide whisker (mSiC) and sulfonated graphene oxide in the composite PBI derivatives were observed. Proton conductivity are recorded at 0.371, 0.271 and 0.280 S/cm, respectively.","PeriodicalId":326334,"journal":{"name":"Journal of Applied Membrane Science & Technology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Advancement in Phosphoric Acid Doped Polybenzimidazole Membrane for High Temperature PEM Fuel Cells: A Review\",\"authors\":\"A. A. Tahrim, I. N. H. M. Amin\",\"doi\":\"10.11113/AMST.V23N1.136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-temperature polymer electrolyte membrane fuel cell as a sustainable green technology has been developed throughout the years as it provides several benefits compared to Nafion-based fuel cells (e.g., CO tolerance, improved kinetic and enhance water management). Polybenzimidazole which one of the best membrane candidates was extensively studied due to excellent properties to be used in high-temperature application. Impregnating polybenzimidazole with phosphoric acid are most commonly practised as an electrolyte membrane in the PEMFC. In this paper, recent advancement of the existing literature regarding work revolving polybenzimidazole to improve the performance of phosphoric acid doped polybenzimidazole membrane for high-temperature polymer electrolyte membrane fuel cell are reviewed. Notable works such as using aluminium containing silicate (Al-Si), silicon carbide whisker (mSiC) and sulfonated graphene oxide in the composite PBI derivatives were observed. Proton conductivity are recorded at 0.371, 0.271 and 0.280 S/cm, respectively.\",\"PeriodicalId\":326334,\"journal\":{\"name\":\"Journal of Applied Membrane Science & Technology\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Membrane Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/AMST.V23N1.136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Membrane Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/AMST.V23N1.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

高温聚合物电解质膜燃料电池作为一种可持续发展的绿色技术已经发展了多年,因为与基于nafon的燃料电池相比,它具有几个优点(例如,CO耐受性,改善的动力学和加强的水管理)。聚苯并咪唑是最佳的膜候选物之一,由于其优异的性能在高温应用中得到了广泛的研究。用磷酸浸渍聚苯并咪唑是PEMFC中最常用的电解质膜。本文综述了围绕聚苯并咪唑改善磷酸掺杂聚苯并咪唑膜用于高温聚合物电解质膜燃料电池性能的研究进展。观察到在复合PBI衍生物中使用含铝硅酸盐(Al-Si)、碳化硅晶须(mSiC)和磺化氧化石墨烯等值得注意的工作。质子电导率分别为0.371、0.271和0.280 S/cm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancement in Phosphoric Acid Doped Polybenzimidazole Membrane for High Temperature PEM Fuel Cells: A Review
High-temperature polymer electrolyte membrane fuel cell as a sustainable green technology has been developed throughout the years as it provides several benefits compared to Nafion-based fuel cells (e.g., CO tolerance, improved kinetic and enhance water management). Polybenzimidazole which one of the best membrane candidates was extensively studied due to excellent properties to be used in high-temperature application. Impregnating polybenzimidazole with phosphoric acid are most commonly practised as an electrolyte membrane in the PEMFC. In this paper, recent advancement of the existing literature regarding work revolving polybenzimidazole to improve the performance of phosphoric acid doped polybenzimidazole membrane for high-temperature polymer electrolyte membrane fuel cell are reviewed. Notable works such as using aluminium containing silicate (Al-Si), silicon carbide whisker (mSiC) and sulfonated graphene oxide in the composite PBI derivatives were observed. Proton conductivity are recorded at 0.371, 0.271 and 0.280 S/cm, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信