热响应型水凝胶结合基质等离子体生物传感器方案

M. Toma, W. Knoll, J. Dostálek, A. Mateescu, U. Jonas
{"title":"热响应型水凝胶结合基质等离子体生物传感器方案","authors":"M. Toma, W. Knoll, J. Dostálek, A. Mateescu, U. Jonas","doi":"10.1109/IWBP.2011.5954841","DOIUrl":null,"url":null,"abstract":"We propose a new approach for surface plasmon-enhanced fluorescence spectroscopy (SPFS) biosensor with efficient collecting of molecular analytes from a sample at the sensor surface. It is based on a responsive hydrogel binding matrix that is tethered on a metallic sensor surface and that can reversibly swell and collapse upon triggering by an external stimulus. The swelling is associated with a rapid uptake of an aqueous sample into the matrix and subsequent selective binding of a specific analyte to the catcher molecules anchored to the matrix. Upon the collapse the gel, the sample fluid is expelled and the captured analyte is compacted in close proximity to the sensor surface where large field enhancement occurs. We pursue this approach by using an indium tin oxide (ITO) microheater with surface plasmon-supporting metallic layer and thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) hydrogel on the top. The NIPAAm-based gel can be functionalized with catcher molecules and we show that the developed setup enables rapid cycling of its swelling / collapsing state by temperature modulation around 32 °C.","PeriodicalId":142421,"journal":{"name":"2011 International Workshop on Biophotonics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasmonic biosensor schemes with thermo-responsive hydrogel binding matrix\",\"authors\":\"M. Toma, W. Knoll, J. Dostálek, A. Mateescu, U. Jonas\",\"doi\":\"10.1109/IWBP.2011.5954841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new approach for surface plasmon-enhanced fluorescence spectroscopy (SPFS) biosensor with efficient collecting of molecular analytes from a sample at the sensor surface. It is based on a responsive hydrogel binding matrix that is tethered on a metallic sensor surface and that can reversibly swell and collapse upon triggering by an external stimulus. The swelling is associated with a rapid uptake of an aqueous sample into the matrix and subsequent selective binding of a specific analyte to the catcher molecules anchored to the matrix. Upon the collapse the gel, the sample fluid is expelled and the captured analyte is compacted in close proximity to the sensor surface where large field enhancement occurs. We pursue this approach by using an indium tin oxide (ITO) microheater with surface plasmon-supporting metallic layer and thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) hydrogel on the top. The NIPAAm-based gel can be functionalized with catcher molecules and we show that the developed setup enables rapid cycling of its swelling / collapsing state by temperature modulation around 32 °C.\",\"PeriodicalId\":142421,\"journal\":{\"name\":\"2011 International Workshop on Biophotonics\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Workshop on Biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWBP.2011.5954841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Workshop on Biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBP.2011.5954841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种表面等离子体增强荧光光谱(SPFS)生物传感器的新方法,该方法可以有效地从传感器表面的样品中收集分子分析物。它基于一种反应性的水凝胶结合基质,该基质系在金属传感器表面上,在外部刺激的触发下可以可逆地膨胀和崩溃。溶胀与水样快速被吸收到基质中以及随后特定分析物与固定在基质上的捕集器分子的选择性结合有关。在凝胶崩溃时,样品流体被排出,捕获的分析物在靠近传感器表面的地方被压实,在那里发生大场增强。我们采用了一种氧化铟锡(ITO)微加热器,其表面有等离子体支撑金属层,顶部有热敏性聚n-异丙基丙烯酰胺(PNIPAAm)水凝胶。基于nipaam的凝胶可以用捕集器分子功能化,我们表明,开发的装置可以通过32°C左右的温度调节实现其膨胀/崩溃状态的快速循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plasmonic biosensor schemes with thermo-responsive hydrogel binding matrix
We propose a new approach for surface plasmon-enhanced fluorescence spectroscopy (SPFS) biosensor with efficient collecting of molecular analytes from a sample at the sensor surface. It is based on a responsive hydrogel binding matrix that is tethered on a metallic sensor surface and that can reversibly swell and collapse upon triggering by an external stimulus. The swelling is associated with a rapid uptake of an aqueous sample into the matrix and subsequent selective binding of a specific analyte to the catcher molecules anchored to the matrix. Upon the collapse the gel, the sample fluid is expelled and the captured analyte is compacted in close proximity to the sensor surface where large field enhancement occurs. We pursue this approach by using an indium tin oxide (ITO) microheater with surface plasmon-supporting metallic layer and thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) hydrogel on the top. The NIPAAm-based gel can be functionalized with catcher molecules and we show that the developed setup enables rapid cycling of its swelling / collapsing state by temperature modulation around 32 °C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信