Yinyuan Zhang, Yang Zhang, Xinjun Mao, Yiwen Wu, Bo Lin, Shangwen Wang
{"title":"基于深度配置理解的Docker容器基础镜像推荐","authors":"Yinyuan Zhang, Yang Zhang, Xinjun Mao, Yiwen Wu, Bo Lin, Shangwen Wang","doi":"10.1109/saner53432.2022.00060","DOIUrl":null,"url":null,"abstract":"Docker containers are being widely used in large-scale industrial environments. In practice, developers must manually specify the base image in the dockerfile in the process of container creation. However, finding the proper base image is a nontrivial task because manually searching is time-consuming and easily leads to the use of unsuitable base images, especially for newcomers. There is still a lack of automatic approaches for recommending related base image for developers through dockerfile configuration. To tackle this problem, this paper makes the first attempt to propose a neural network approach named DCCimagerec which is based on deep configuration comprehension. It aims to use the structural configuration features of dockerfile extracted by AST and path-attention model to recommend potentially suitable base image. The evaluation experiments based on about 83,000 dockerfiles show that DCCimagerec outperforms multiple baselines, improving Precision by 7.5%-67.5%, Recall by 6.2%-106.6%, and F1 by 7.5%-150.2%.","PeriodicalId":437520,"journal":{"name":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Recommending Base Image for Docker Containers based on Deep Configuration Comprehension\",\"authors\":\"Yinyuan Zhang, Yang Zhang, Xinjun Mao, Yiwen Wu, Bo Lin, Shangwen Wang\",\"doi\":\"10.1109/saner53432.2022.00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Docker containers are being widely used in large-scale industrial environments. In practice, developers must manually specify the base image in the dockerfile in the process of container creation. However, finding the proper base image is a nontrivial task because manually searching is time-consuming and easily leads to the use of unsuitable base images, especially for newcomers. There is still a lack of automatic approaches for recommending related base image for developers through dockerfile configuration. To tackle this problem, this paper makes the first attempt to propose a neural network approach named DCCimagerec which is based on deep configuration comprehension. It aims to use the structural configuration features of dockerfile extracted by AST and path-attention model to recommend potentially suitable base image. The evaluation experiments based on about 83,000 dockerfiles show that DCCimagerec outperforms multiple baselines, improving Precision by 7.5%-67.5%, Recall by 6.2%-106.6%, and F1 by 7.5%-150.2%.\",\"PeriodicalId\":437520,\"journal\":{\"name\":\"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/saner53432.2022.00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/saner53432.2022.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recommending Base Image for Docker Containers based on Deep Configuration Comprehension
Docker containers are being widely used in large-scale industrial environments. In practice, developers must manually specify the base image in the dockerfile in the process of container creation. However, finding the proper base image is a nontrivial task because manually searching is time-consuming and easily leads to the use of unsuitable base images, especially for newcomers. There is still a lack of automatic approaches for recommending related base image for developers through dockerfile configuration. To tackle this problem, this paper makes the first attempt to propose a neural network approach named DCCimagerec which is based on deep configuration comprehension. It aims to use the structural configuration features of dockerfile extracted by AST and path-attention model to recommend potentially suitable base image. The evaluation experiments based on about 83,000 dockerfiles show that DCCimagerec outperforms multiple baselines, improving Precision by 7.5%-67.5%, Recall by 6.2%-106.6%, and F1 by 7.5%-150.2%.