VFDS:非常快的数据库采样系统

Teodora Sandra Buda, Thomas Cerqueus, John Murphy, Morten Kristiansen
{"title":"VFDS:非常快的数据库采样系统","authors":"Teodora Sandra Buda, Thomas Cerqueus, John Murphy, Morten Kristiansen","doi":"10.1109/IRI.2013.6642466","DOIUrl":null,"url":null,"abstract":"In a wide range of application areas (e.g. data mining, approximate query evaluation, histogram construction), database sampling has proved to be a powerful technique. It is generally used when the computational cost of processing large amounts of information is extremely high, and a faster response with a lower level of accuracy for the results is preferred. Previous sampling techniques achieve this balance, however, an evaluation of the cost of the database sampling process should be considered. We argue that the performance of current relational database sampling techniques that maintain the data integrity of the sample database is low and a faster strategy needs to be devised. In this paper we propose a very fast sampling method that maintains the referential integrity of the sample database intact. The sampling method targets the production environment of a system under development, that generally consists of large amounts of data computationally costly to analyze. We evaluate our method in comparison with previous database sampling approaches and show that our method produces a sample database at least 300 times faster and with a maximum trade off of 0.5% in terms of sample size error.","PeriodicalId":418492,"journal":{"name":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"VFDS: Very fast database sampling system\",\"authors\":\"Teodora Sandra Buda, Thomas Cerqueus, John Murphy, Morten Kristiansen\",\"doi\":\"10.1109/IRI.2013.6642466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a wide range of application areas (e.g. data mining, approximate query evaluation, histogram construction), database sampling has proved to be a powerful technique. It is generally used when the computational cost of processing large amounts of information is extremely high, and a faster response with a lower level of accuracy for the results is preferred. Previous sampling techniques achieve this balance, however, an evaluation of the cost of the database sampling process should be considered. We argue that the performance of current relational database sampling techniques that maintain the data integrity of the sample database is low and a faster strategy needs to be devised. In this paper we propose a very fast sampling method that maintains the referential integrity of the sample database intact. The sampling method targets the production environment of a system under development, that generally consists of large amounts of data computationally costly to analyze. We evaluate our method in comparison with previous database sampling approaches and show that our method produces a sample database at least 300 times faster and with a maximum trade off of 0.5% in terms of sample size error.\",\"PeriodicalId\":418492,\"journal\":{\"name\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2013.6642466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2013.6642466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在广泛的应用领域(如数据挖掘、近似查询评估、直方图构建)中,数据库采样已被证明是一种强大的技术。它通常用于处理大量信息的计算成本非常高,并且首选更快的响应和较低的结果准确性。以前的抽样技术实现了这种平衡,但是,应该考虑对数据库抽样过程的成本进行评估。我们认为,当前维护样本数据库数据完整性的关系数据库采样技术的性能很低,需要设计更快的策略。在本文中,我们提出了一种非常快速的采样方法,以保持样本数据库的参考完整性。抽样方法的目标是正在开发的系统的生产环境,通常由大量的数据组成,计算分析成本很高。我们将我们的方法与以前的数据库抽样方法进行了比较,并表明我们的方法产生样本数据库的速度至少快300倍,并且在样本大小误差方面的最大折衷为0.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VFDS: Very fast database sampling system
In a wide range of application areas (e.g. data mining, approximate query evaluation, histogram construction), database sampling has proved to be a powerful technique. It is generally used when the computational cost of processing large amounts of information is extremely high, and a faster response with a lower level of accuracy for the results is preferred. Previous sampling techniques achieve this balance, however, an evaluation of the cost of the database sampling process should be considered. We argue that the performance of current relational database sampling techniques that maintain the data integrity of the sample database is low and a faster strategy needs to be devised. In this paper we propose a very fast sampling method that maintains the referential integrity of the sample database intact. The sampling method targets the production environment of a system under development, that generally consists of large amounts of data computationally costly to analyze. We evaluate our method in comparison with previous database sampling approaches and show that our method produces a sample database at least 300 times faster and with a maximum trade off of 0.5% in terms of sample size error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信