通过包含以图像为中心的突变算子加速“蒙娜丽莎的进化”问题的启发式收敛

Theodor-Alexandru Vlad, Eugen Croitoru
{"title":"通过包含以图像为中心的突变算子加速“蒙娜丽莎的进化”问题的启发式收敛","authors":"Theodor-Alexandru Vlad, Eugen Croitoru","doi":"10.1109/SYNASC57785.2022.00030","DOIUrl":null,"url":null,"abstract":"The \"Evolution of Mona Lisa\" problem aims to approximate a target image by overlapping many semi-transparent polygons. The problem has been tackled in the past using multiple Nature-Inspired heuristics, and our main contribution is adding image-centric mutation operators (scaling, rotating and translating polygons).We compare Genetic Algorithms, Hill-Climbing and Simulated Annealing. A candidate solution has variable length (of, at most, 300 decagons) and, due to the variable opacity of polygons, order matters – resulting, in practice, in a pseudo-Messy GA. We use the same representation and mutation operators for the trajectory methods which, due to the focus on wall-clock time, outperform our GA implementation.We find that these methods retain good image approximation at good run times: 98.9-99.2% (mean on 30 images), with a time limit of 30 minutes, on images 500-pixels tall.","PeriodicalId":446065,"journal":{"name":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating heuristic convergence on the \\\"Evolution of Mona Lisa\\\" problem by including image-centric mutation operators\",\"authors\":\"Theodor-Alexandru Vlad, Eugen Croitoru\",\"doi\":\"10.1109/SYNASC57785.2022.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The \\\"Evolution of Mona Lisa\\\" problem aims to approximate a target image by overlapping many semi-transparent polygons. The problem has been tackled in the past using multiple Nature-Inspired heuristics, and our main contribution is adding image-centric mutation operators (scaling, rotating and translating polygons).We compare Genetic Algorithms, Hill-Climbing and Simulated Annealing. A candidate solution has variable length (of, at most, 300 decagons) and, due to the variable opacity of polygons, order matters – resulting, in practice, in a pseudo-Messy GA. We use the same representation and mutation operators for the trajectory methods which, due to the focus on wall-clock time, outperform our GA implementation.We find that these methods retain good image approximation at good run times: 98.9-99.2% (mean on 30 images), with a time limit of 30 minutes, on images 500-pixels tall.\",\"PeriodicalId\":446065,\"journal\":{\"name\":\"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC57785.2022.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC57785.2022.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

“蒙娜丽莎的进化”问题旨在通过重叠许多半透明多边形来近似目标图像。这个问题已经在过去使用多个自然启发的启发式来解决,我们的主要贡献是添加了以图像为中心的突变算子(缩放、旋转和平移多边形)。我们比较了遗传算法、爬坡算法和模拟退火算法。候选解具有可变长度(最多300个十形),并且由于多边形的不透明度变化,顺序很重要-在实践中导致伪凌乱遗传算法。我们对轨迹方法使用相同的表示和突变算子,由于关注时钟时间,因此优于我们的遗传算法实现。我们发现这些方法在良好的运行时间下保持了良好的图像近似值:98.9-99.2%(30张图像的平均值),时间限制为30分钟,500像素高的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating heuristic convergence on the "Evolution of Mona Lisa" problem by including image-centric mutation operators
The "Evolution of Mona Lisa" problem aims to approximate a target image by overlapping many semi-transparent polygons. The problem has been tackled in the past using multiple Nature-Inspired heuristics, and our main contribution is adding image-centric mutation operators (scaling, rotating and translating polygons).We compare Genetic Algorithms, Hill-Climbing and Simulated Annealing. A candidate solution has variable length (of, at most, 300 decagons) and, due to the variable opacity of polygons, order matters – resulting, in practice, in a pseudo-Messy GA. We use the same representation and mutation operators for the trajectory methods which, due to the focus on wall-clock time, outperform our GA implementation.We find that these methods retain good image approximation at good run times: 98.9-99.2% (mean on 30 images), with a time limit of 30 minutes, on images 500-pixels tall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信