增强的鲁棒涡旋检测

Li Zhang, Xiangxu Meng
{"title":"增强的鲁棒涡旋检测","authors":"Li Zhang, Xiangxu Meng","doi":"10.1109/IHMSC.2012.149","DOIUrl":null,"url":null,"abstract":"We propose to leverage methods of machine learning to enhance robustness of feature detection algorithm. First, we use semi-supervised learning to develop strategies for guiding the selective refinement process based on training with the domain expert. Second, we propose to combine several local feature detection algorithm into a single, more robust compound classifier using AdaBoost that produces validated feature detection. The compound classifier would combine the best of all local classifiers as they respond to the underlying physical signal. The specific application of interest is vortex detection in turbulent flows. We applied our algorithms to fluid datasets to illustrate the efficacy of our approach.","PeriodicalId":431532,"journal":{"name":"2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhanced Robust Vortex Detection\",\"authors\":\"Li Zhang, Xiangxu Meng\",\"doi\":\"10.1109/IHMSC.2012.149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose to leverage methods of machine learning to enhance robustness of feature detection algorithm. First, we use semi-supervised learning to develop strategies for guiding the selective refinement process based on training with the domain expert. Second, we propose to combine several local feature detection algorithm into a single, more robust compound classifier using AdaBoost that produces validated feature detection. The compound classifier would combine the best of all local classifiers as they respond to the underlying physical signal. The specific application of interest is vortex detection in turbulent flows. We applied our algorithms to fluid datasets to illustrate the efficacy of our approach.\",\"PeriodicalId\":431532,\"journal\":{\"name\":\"2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2012.149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2012.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出利用机器学习的方法来增强特征检测算法的鲁棒性。首先,我们使用半监督学习来制定策略,以指导基于领域专家训练的选择性细化过程。其次,我们建议使用AdaBoost将几个局部特征检测算法组合成一个单一的、更鲁棒的复合分类器,从而产生经过验证的特征检测。复合分类器将结合所有局部分类器中最好的分类器,因为它们响应底层物理信号。我们感兴趣的具体应用是湍流中的涡流检测。我们将我们的算法应用于流体数据集,以说明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Robust Vortex Detection
We propose to leverage methods of machine learning to enhance robustness of feature detection algorithm. First, we use semi-supervised learning to develop strategies for guiding the selective refinement process based on training with the domain expert. Second, we propose to combine several local feature detection algorithm into a single, more robust compound classifier using AdaBoost that produces validated feature detection. The compound classifier would combine the best of all local classifiers as they respond to the underlying physical signal. The specific application of interest is vortex detection in turbulent flows. We applied our algorithms to fluid datasets to illustrate the efficacy of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信