{"title":"压电熔纺纺织纤维:技术综述","authors":"D. Matsouka, S. Vassiliadis","doi":"10.5772/INTECHOPEN.78389","DOIUrl":null,"url":null,"abstract":"Piezoelectricity was first described by the Curie brothers in the late 1800s. The first mate - rials investigated were natural materials such as bone and wood and single crystals such as quartz. Then in 1946 it was discovered that BaTiO 3 ceramic can be made piezoelectric through a poling process. This was followed by the discovery of lead zirconate titanate solid solutions (PZT) in 1954 of very strong lead effects which is still widely used in piezoelectric applications. In 1969, Kawai discovered large piezoelectricity in elongated and poled films of polyvinylidene fluoride (PVDF) opening the way for research into piezoelectric polymers. Piezoelectric polymers exhibit low density and excellent sensi tivity and are mechanically tough and respond better to fatigue situations. Since 2010, research has focused on the production of melt-spun piezoelectric textile fibers, with the aim of integrating sensing/energy-harvesting capabilities into smart textile structures. In this chapter, a technological overview of the state-of-the-art research into piezoelectric, melt-spun, textile fibers will be presented. The methods used for the characterization of the fibers will also be discussed with special concentration on the electric response of the fibers after mechanical stimulation.","PeriodicalId":302162,"journal":{"name":"Piezoelectricity - Organic and Inorganic Materials and Applications","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Piezoelectric Melt-Spun Textile Fibers: Technological Overview\",\"authors\":\"D. Matsouka, S. Vassiliadis\",\"doi\":\"10.5772/INTECHOPEN.78389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Piezoelectricity was first described by the Curie brothers in the late 1800s. The first mate - rials investigated were natural materials such as bone and wood and single crystals such as quartz. Then in 1946 it was discovered that BaTiO 3 ceramic can be made piezoelectric through a poling process. This was followed by the discovery of lead zirconate titanate solid solutions (PZT) in 1954 of very strong lead effects which is still widely used in piezoelectric applications. In 1969, Kawai discovered large piezoelectricity in elongated and poled films of polyvinylidene fluoride (PVDF) opening the way for research into piezoelectric polymers. Piezoelectric polymers exhibit low density and excellent sensi tivity and are mechanically tough and respond better to fatigue situations. Since 2010, research has focused on the production of melt-spun piezoelectric textile fibers, with the aim of integrating sensing/energy-harvesting capabilities into smart textile structures. In this chapter, a technological overview of the state-of-the-art research into piezoelectric, melt-spun, textile fibers will be presented. The methods used for the characterization of the fibers will also be discussed with special concentration on the electric response of the fibers after mechanical stimulation.\",\"PeriodicalId\":302162,\"journal\":{\"name\":\"Piezoelectricity - Organic and Inorganic Materials and Applications\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Piezoelectricity - Organic and Inorganic Materials and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.78389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Piezoelectricity - Organic and Inorganic Materials and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.78389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Piezoelectricity was first described by the Curie brothers in the late 1800s. The first mate - rials investigated were natural materials such as bone and wood and single crystals such as quartz. Then in 1946 it was discovered that BaTiO 3 ceramic can be made piezoelectric through a poling process. This was followed by the discovery of lead zirconate titanate solid solutions (PZT) in 1954 of very strong lead effects which is still widely used in piezoelectric applications. In 1969, Kawai discovered large piezoelectricity in elongated and poled films of polyvinylidene fluoride (PVDF) opening the way for research into piezoelectric polymers. Piezoelectric polymers exhibit low density and excellent sensi tivity and are mechanically tough and respond better to fatigue situations. Since 2010, research has focused on the production of melt-spun piezoelectric textile fibers, with the aim of integrating sensing/energy-harvesting capabilities into smart textile structures. In this chapter, a technological overview of the state-of-the-art research into piezoelectric, melt-spun, textile fibers will be presented. The methods used for the characterization of the fibers will also be discussed with special concentration on the electric response of the fibers after mechanical stimulation.