分形编码图像的收敛性

J. Kominek
{"title":"分形编码图像的收敛性","authors":"J. Kominek","doi":"10.1109/DCC.1995.515514","DOIUrl":null,"url":null,"abstract":"Fractal image compression, despite its great potential, suffers from some flaws that may prevent its adaptation from becoming more widespread. One such problem is the difficulty of guaranteeing convergence, let alone a specific error tolerance. To help surmount this problem, we have introduced the terms compound, cycle, and partial contractivity concepts indispensable for understanding convergence of fractal images. Most important, they connect the behavior of individual pixels to the image as a whole, and relate such behavior to the component affine transforms.","PeriodicalId":107017,"journal":{"name":"Proceedings DCC '95 Data Compression Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Convergence of fractal encoded images\",\"authors\":\"J. Kominek\",\"doi\":\"10.1109/DCC.1995.515514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fractal image compression, despite its great potential, suffers from some flaws that may prevent its adaptation from becoming more widespread. One such problem is the difficulty of guaranteeing convergence, let alone a specific error tolerance. To help surmount this problem, we have introduced the terms compound, cycle, and partial contractivity concepts indispensable for understanding convergence of fractal images. Most important, they connect the behavior of individual pixels to the image as a whole, and relate such behavior to the component affine transforms.\",\"PeriodicalId\":107017,\"journal\":{\"name\":\"Proceedings DCC '95 Data Compression Conference\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC '95 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1995.515514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '95 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1995.515514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

尽管分形图像压缩具有巨大的潜力,但它也存在一些缺陷,这些缺陷可能会阻碍它的适应得到更广泛的应用。其中一个问题是难以保证收敛性,更不用说特定的容错性了。为了帮助克服这个问题,我们引入了复合、循环和部分收缩的概念,这对于理解分形图像的收敛性是必不可少的。最重要的是,它们将单个像素的行为与图像作为一个整体连接起来,并将这种行为与组件仿射变换联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of fractal encoded images
Fractal image compression, despite its great potential, suffers from some flaws that may prevent its adaptation from becoming more widespread. One such problem is the difficulty of guaranteeing convergence, let alone a specific error tolerance. To help surmount this problem, we have introduced the terms compound, cycle, and partial contractivity concepts indispensable for understanding convergence of fractal images. Most important, they connect the behavior of individual pixels to the image as a whole, and relate such behavior to the component affine transforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信