基于权重学习的混合分类器组合框架

S. Khalid, S. Arshad
{"title":"基于权重学习的混合分类器组合框架","authors":"S. Khalid, S. Arshad","doi":"10.1109/CIMSIM.2013.34","DOIUrl":null,"url":null,"abstract":"In this paper, we present a weight learning method introduced to learn weights on each individual classifier to construct an ensemble. Genetic algorithm is applied to search for an optimal combination of weights for each individual classifier on which classifier ensemble is expected to give best performance. Our proposed ensemble approach can combine heterogeneous classifiers and/or classifier ensembles to enhance the overall classification performance of a given classifier system. We have evaluated our proposed ensemble approach on variety of real life datasets. The proposed approach is compared with existing state-of-the art ensemble techniques such as Adaboost, Bagging and RSM to demonstrate the superiority of proposed work as compared to the competitors.","PeriodicalId":249355,"journal":{"name":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Framework for Constructing Hybrid Classifier Using Weight Learning to Combine Heterogeneous Classifiers\",\"authors\":\"S. Khalid, S. Arshad\",\"doi\":\"10.1109/CIMSIM.2013.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a weight learning method introduced to learn weights on each individual classifier to construct an ensemble. Genetic algorithm is applied to search for an optimal combination of weights for each individual classifier on which classifier ensemble is expected to give best performance. Our proposed ensemble approach can combine heterogeneous classifiers and/or classifier ensembles to enhance the overall classification performance of a given classifier system. We have evaluated our proposed ensemble approach on variety of real life datasets. The proposed approach is compared with existing state-of-the art ensemble techniques such as Adaboost, Bagging and RSM to demonstrate the superiority of proposed work as compared to the competitors.\",\"PeriodicalId\":249355,\"journal\":{\"name\":\"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSIM.2013.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSIM.2013.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种权重学习方法来学习每个分类器上的权重来构建一个集成。遗传算法用于搜索每个分类器的最优权值组合,使分类器集成的性能达到最佳。我们提出的集成方法可以结合异构分类器和/或分类器集成来提高给定分类器系统的整体分类性能。我们已经在各种现实生活数据集上评估了我们提出的集成方法。将提出的方法与现有的最先进的集成技术(如Adaboost、Bagging和RSM)进行比较,以证明与竞争对手相比,提出的工作具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Framework for Constructing Hybrid Classifier Using Weight Learning to Combine Heterogeneous Classifiers
In this paper, we present a weight learning method introduced to learn weights on each individual classifier to construct an ensemble. Genetic algorithm is applied to search for an optimal combination of weights for each individual classifier on which classifier ensemble is expected to give best performance. Our proposed ensemble approach can combine heterogeneous classifiers and/or classifier ensembles to enhance the overall classification performance of a given classifier system. We have evaluated our proposed ensemble approach on variety of real life datasets. The proposed approach is compared with existing state-of-the art ensemble techniques such as Adaboost, Bagging and RSM to demonstrate the superiority of proposed work as compared to the competitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信