比率优化的策略梯度:一个案例研究

Wesley A. Suttle, Alec Koppel, Ji Liu
{"title":"比率优化的策略梯度:一个案例研究","authors":"Wesley A. Suttle, Alec Koppel, Ji Liu","doi":"10.1109/CISS53076.2022.9751163","DOIUrl":null,"url":null,"abstract":"We consider policy gradient methods for ratio optimization problems by way of an illustrative case study: maximizing the Omega ratio of a financial portfolio. We propose a general framework for ratio optimization in sequential decision-making problems, explore the notion of hidden quasiconcavity in such problems, and propose an actor-critic algorithm for the Omega ratio problem. Our central contribution is to show that the algorithm converges almost surely to (a neighborhood of) a global optimum and to demonstrate its performance in practice.","PeriodicalId":305918,"journal":{"name":"2022 56th Annual Conference on Information Sciences and Systems (CISS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Policy Gradient for Ratio Optimization: A Case Study\",\"authors\":\"Wesley A. Suttle, Alec Koppel, Ji Liu\",\"doi\":\"10.1109/CISS53076.2022.9751163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider policy gradient methods for ratio optimization problems by way of an illustrative case study: maximizing the Omega ratio of a financial portfolio. We propose a general framework for ratio optimization in sequential decision-making problems, explore the notion of hidden quasiconcavity in such problems, and propose an actor-critic algorithm for the Omega ratio problem. Our central contribution is to show that the algorithm converges almost surely to (a neighborhood of) a global optimum and to demonstrate its performance in practice.\",\"PeriodicalId\":305918,\"journal\":{\"name\":\"2022 56th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 56th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS53076.2022.9751163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 56th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS53076.2022.9751163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过一个说明性的案例研究来考虑比率优化问题的策略梯度方法:最大化金融投资组合的Omega比率。我们提出了序列决策问题中比率优化的一般框架,探讨了序列决策问题中隐藏拟象腔的概念,并提出了一个用于Omega比率问题的行动者-评论家算法。我们的核心贡献是表明该算法几乎肯定收敛于(一个邻域)全局最优,并证明其在实践中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Policy Gradient for Ratio Optimization: A Case Study
We consider policy gradient methods for ratio optimization problems by way of an illustrative case study: maximizing the Omega ratio of a financial portfolio. We propose a general framework for ratio optimization in sequential decision-making problems, explore the notion of hidden quasiconcavity in such problems, and propose an actor-critic algorithm for the Omega ratio problem. Our central contribution is to show that the algorithm converges almost surely to (a neighborhood of) a global optimum and to demonstrate its performance in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信