分布式云系统中高性能计算任务的能量感知调度

Aeshah Alsughayyir, T. Erlebach
{"title":"分布式云系统中高性能计算任务的能量感知调度","authors":"Aeshah Alsughayyir, T. Erlebach","doi":"10.1109/PDP.2016.83","DOIUrl":null,"url":null,"abstract":"The increased computational needs in many sectors place huge demands on cloud computing. Power consumption and resource pool capacity are two of the challenges faced by the next generation of high performance computing (HPC). This paper aims at minimising the computing-energy consumption in decentralised multi-cloud systems using Dynamic Voltage and Frequency Scaling (DVFS) when scheduling dependent HPC tasks under deadline constraints. We propose an energy-aware scheduling algorithm EAGS. To demonstrate the efficiency of our algorithm EAGS, we compare it with the Cloud min-min Scheduling (CMMS) algorithm in different experiments. The simulation results show that our algorithm can produce energy consumption lower than CMMS by an average of 63.9%.","PeriodicalId":192273,"journal":{"name":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Energy Aware Scheduling of HPC Tasks in Decentralised Cloud Systems\",\"authors\":\"Aeshah Alsughayyir, T. Erlebach\",\"doi\":\"10.1109/PDP.2016.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increased computational needs in many sectors place huge demands on cloud computing. Power consumption and resource pool capacity are two of the challenges faced by the next generation of high performance computing (HPC). This paper aims at minimising the computing-energy consumption in decentralised multi-cloud systems using Dynamic Voltage and Frequency Scaling (DVFS) when scheduling dependent HPC tasks under deadline constraints. We propose an energy-aware scheduling algorithm EAGS. To demonstrate the efficiency of our algorithm EAGS, we compare it with the Cloud min-min Scheduling (CMMS) algorithm in different experiments. The simulation results show that our algorithm can produce energy consumption lower than CMMS by an average of 63.9%.\",\"PeriodicalId\":192273,\"journal\":{\"name\":\"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP.2016.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2016.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

许多领域不断增长的计算需求对云计算提出了巨大的要求。功耗和资源池容量是下一代高性能计算(HPC)面临的两大挑战。本文旨在利用动态电压和频率缩放(DVFS)在调度依赖的高性能计算任务时最小化分散多云系统中的计算能量消耗。提出了一种能量感知调度算法EAGS。为了证明EAGS算法的有效性,我们在不同的实验中将其与云最小最小调度(CMMS)算法进行了比较。仿真结果表明,该算法的能耗比CMMS平均低63.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Aware Scheduling of HPC Tasks in Decentralised Cloud Systems
The increased computational needs in many sectors place huge demands on cloud computing. Power consumption and resource pool capacity are two of the challenges faced by the next generation of high performance computing (HPC). This paper aims at minimising the computing-energy consumption in decentralised multi-cloud systems using Dynamic Voltage and Frequency Scaling (DVFS) when scheduling dependent HPC tasks under deadline constraints. We propose an energy-aware scheduling algorithm EAGS. To demonstrate the efficiency of our algorithm EAGS, we compare it with the Cloud min-min Scheduling (CMMS) algorithm in different experiments. The simulation results show that our algorithm can produce energy consumption lower than CMMS by an average of 63.9%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信