使用上下文树的非线性涡轮均衡

N. Kalantarova, Kyeongyeon Kim, S. Kozat, A. Singer
{"title":"使用上下文树的非线性涡轮均衡","authors":"N. Kalantarova, Kyeongyeon Kim, S. Kozat, A. Singer","doi":"10.1109/ITA.2011.5743608","DOIUrl":null,"url":null,"abstract":"In this paper, we study adaptive nonlinear turbo equalization to model the nonlinear dependency of a linear minimum mean square error (MMSE) equalizer on soft information from the decoder. To accomplish this, we introduce piecewise linear models based on context trees that can adaptively choose both the partition regions as well as the equalizer coefficients in each region independently, with the computational complexity of a single adaptive linear equalizer. This approach is guaranteed to asymptotically achieve the performance of the best piecewise linear equalizer that can choose both its regions as well as its filter parameters based on observing the whole data sequence in advance.","PeriodicalId":326414,"journal":{"name":"2011 Information Theory and Applications Workshop","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear turbo equalization using context trees\",\"authors\":\"N. Kalantarova, Kyeongyeon Kim, S. Kozat, A. Singer\",\"doi\":\"10.1109/ITA.2011.5743608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study adaptive nonlinear turbo equalization to model the nonlinear dependency of a linear minimum mean square error (MMSE) equalizer on soft information from the decoder. To accomplish this, we introduce piecewise linear models based on context trees that can adaptively choose both the partition regions as well as the equalizer coefficients in each region independently, with the computational complexity of a single adaptive linear equalizer. This approach is guaranteed to asymptotically achieve the performance of the best piecewise linear equalizer that can choose both its regions as well as its filter parameters based on observing the whole data sequence in advance.\",\"PeriodicalId\":326414,\"journal\":{\"name\":\"2011 Information Theory and Applications Workshop\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Information Theory and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2011.5743608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2011.5743608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究自适应非线性turbo均衡,模拟线性最小均方误差均衡器(MMSE)对解码器软信息的非线性依赖。为了实现这一点,我们引入了基于上下文树的分段线性模型,该模型可以自适应地选择分区区域以及每个区域中的均衡器系数,具有单个自适应线性均衡器的计算复杂度。这种方法可以保证渐进地达到最佳分段线性均衡器的性能,该均衡器可以在预先观察整个数据序列的基础上选择其区域和滤波器参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear turbo equalization using context trees
In this paper, we study adaptive nonlinear turbo equalization to model the nonlinear dependency of a linear minimum mean square error (MMSE) equalizer on soft information from the decoder. To accomplish this, we introduce piecewise linear models based on context trees that can adaptively choose both the partition regions as well as the equalizer coefficients in each region independently, with the computational complexity of a single adaptive linear equalizer. This approach is guaranteed to asymptotically achieve the performance of the best piecewise linear equalizer that can choose both its regions as well as its filter parameters based on observing the whole data sequence in advance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信