{"title":"光线追踪确定性三维分形","authors":"J. Hart, D. Sandin, L. Kauffman","doi":"10.1145/74333.74363","DOIUrl":null,"url":null,"abstract":"As shown in 1982, Julia sets of quadratic functions as well as many other deterministic fractals exist in spaces of higher dimensionality than the complex plane. Originally a boundary-tracking algorithm was used to view these structures but required a large amount of storage space to operate. By ray tracing these objects, the storage facilities of a graphics workstation frame buffer are sufficient. A short discussion of a specific set of 3-D deterministic fractals precedes a full description of a ray-tracing algorithm applied to these objects. A comparison with the boundary-tracking method and applications to other 3-D deterministic fractals are also included.","PeriodicalId":422743,"journal":{"name":"Proceedings of the 16th annual conference on Computer graphics and interactive techniques","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"136","resultStr":"{\"title\":\"Ray tracing deterministic 3-D fractals\",\"authors\":\"J. Hart, D. Sandin, L. Kauffman\",\"doi\":\"10.1145/74333.74363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As shown in 1982, Julia sets of quadratic functions as well as many other deterministic fractals exist in spaces of higher dimensionality than the complex plane. Originally a boundary-tracking algorithm was used to view these structures but required a large amount of storage space to operate. By ray tracing these objects, the storage facilities of a graphics workstation frame buffer are sufficient. A short discussion of a specific set of 3-D deterministic fractals precedes a full description of a ray-tracing algorithm applied to these objects. A comparison with the boundary-tracking method and applications to other 3-D deterministic fractals are also included.\",\"PeriodicalId\":422743,\"journal\":{\"name\":\"Proceedings of the 16th annual conference on Computer graphics and interactive techniques\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"136\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th annual conference on Computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/74333.74363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/74333.74363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
As shown in 1982, Julia sets of quadratic functions as well as many other deterministic fractals exist in spaces of higher dimensionality than the complex plane. Originally a boundary-tracking algorithm was used to view these structures but required a large amount of storage space to operate. By ray tracing these objects, the storage facilities of a graphics workstation frame buffer are sufficient. A short discussion of a specific set of 3-D deterministic fractals precedes a full description of a ray-tracing algorithm applied to these objects. A comparison with the boundary-tracking method and applications to other 3-D deterministic fractals are also included.