S. Rahman, Jichi Guo, Akshatha Bhat, Carlos D. Garcia, Majedul Haque Sujon, Qing Yi, C. Liao, D. Quinlan
{"title":"研究应用级优化对多核架构功耗的影响","authors":"S. Rahman, Jichi Guo, Akshatha Bhat, Carlos D. Garcia, Majedul Haque Sujon, Qing Yi, C. Liao, D. Quinlan","doi":"10.1145/2212908.2212927","DOIUrl":null,"url":null,"abstract":"This paper studies the overall system power variations of two multi-core architectures, an 8-core Intel and a 32-core AMD workstation, while using these machines to execute a wide variety of sequential and multi-threaded benchmarks using varying compiler optimization settings and runtime configurations. Our extensive experimental study provides insights for answering two questions: 1) what degrees of impact can application level optimizations have on reducing the overall system power consumption of modern CMP architectures; and 2) what strategies can compilers and application developers adopt to achieve a balanced performance and power efficiency for applications from a variety of science and embedded systems domains.","PeriodicalId":430420,"journal":{"name":"ACM International Conference on Computing Frontiers","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Studying the impact of application-level optimizations on the power consumption of multi-core architectures\",\"authors\":\"S. Rahman, Jichi Guo, Akshatha Bhat, Carlos D. Garcia, Majedul Haque Sujon, Qing Yi, C. Liao, D. Quinlan\",\"doi\":\"10.1145/2212908.2212927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the overall system power variations of two multi-core architectures, an 8-core Intel and a 32-core AMD workstation, while using these machines to execute a wide variety of sequential and multi-threaded benchmarks using varying compiler optimization settings and runtime configurations. Our extensive experimental study provides insights for answering two questions: 1) what degrees of impact can application level optimizations have on reducing the overall system power consumption of modern CMP architectures; and 2) what strategies can compilers and application developers adopt to achieve a balanced performance and power efficiency for applications from a variety of science and embedded systems domains.\",\"PeriodicalId\":430420,\"journal\":{\"name\":\"ACM International Conference on Computing Frontiers\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2212908.2212927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2212908.2212927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Studying the impact of application-level optimizations on the power consumption of multi-core architectures
This paper studies the overall system power variations of two multi-core architectures, an 8-core Intel and a 32-core AMD workstation, while using these machines to execute a wide variety of sequential and multi-threaded benchmarks using varying compiler optimization settings and runtime configurations. Our extensive experimental study provides insights for answering two questions: 1) what degrees of impact can application level optimizations have on reducing the overall system power consumption of modern CMP architectures; and 2) what strategies can compilers and application developers adopt to achieve a balanced performance and power efficiency for applications from a variety of science and embedded systems domains.