稀疏孔径高分辨率ISAR成像的Hankel矩阵补全方法

Bangjie Zhang, Gang Xu, Lizhong Jiang, Rui Zhou, Yanyang Liu, Jialian Sheng
{"title":"稀疏孔径高分辨率ISAR成像的Hankel矩阵补全方法","authors":"Bangjie Zhang, Gang Xu, Lizhong Jiang, Rui Zhou, Yanyang Liu, Jialian Sheng","doi":"10.23919/CISS51089.2021.9652261","DOIUrl":null,"url":null,"abstract":"Inverse synthetic aperture radar (ISAR) imaging is very challengeable when facing with sparse aperture (SA). Traditional compressive sensing (CS) methods handles the SA imaging problem using sparse representation, but will cause model mismatch inherently. In this paper, a Hankel matrix completion (HMC) approach is proposed for SA ISAR imaging, which can effectively enhance the imaging performance with grid-less technique. The Hankel matrices are constructed from the SA echo in each range bin. After the low-rank property is proved, an MC method based on an augmented Lagrange multiplier (ALM) solution is used to reconstruct the cross-range profile. The proposed method based on the low-rank constraint can avoid the presupposition of over complete basis, thus effectively overcoming the off-grid effect of CS methods. The robustness and effectiveness are further vali-dated using experimental analysis using measured data.","PeriodicalId":318218,"journal":{"name":"2021 2nd China International SAR Symposium (CISS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hankel Matrix Completion Approach for High-resolution ISAR Imaging with Sparse Aperture\",\"authors\":\"Bangjie Zhang, Gang Xu, Lizhong Jiang, Rui Zhou, Yanyang Liu, Jialian Sheng\",\"doi\":\"10.23919/CISS51089.2021.9652261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inverse synthetic aperture radar (ISAR) imaging is very challengeable when facing with sparse aperture (SA). Traditional compressive sensing (CS) methods handles the SA imaging problem using sparse representation, but will cause model mismatch inherently. In this paper, a Hankel matrix completion (HMC) approach is proposed for SA ISAR imaging, which can effectively enhance the imaging performance with grid-less technique. The Hankel matrices are constructed from the SA echo in each range bin. After the low-rank property is proved, an MC method based on an augmented Lagrange multiplier (ALM) solution is used to reconstruct the cross-range profile. The proposed method based on the low-rank constraint can avoid the presupposition of over complete basis, thus effectively overcoming the off-grid effect of CS methods. The robustness and effectiveness are further vali-dated using experimental analysis using measured data.\",\"PeriodicalId\":318218,\"journal\":{\"name\":\"2021 2nd China International SAR Symposium (CISS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd China International SAR Symposium (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CISS51089.2021.9652261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd China International SAR Symposium (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CISS51089.2021.9652261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

逆合成孔径雷达(ISAR)成像在面对稀疏孔径(SA)时非常具有挑战性。传统的压缩感知(CS)方法使用稀疏表示来处理SA成像问题,但会固有地导致模型不匹配。本文提出了一种基于汉克尔矩阵补全(Hankel matrix completion, HMC)的SA ISAR成像方法,该方法可以有效地提高无网格成像技术的成像性能。汉克尔矩阵由每个距离仓中的SA回波构造。在证明了低秩性后,采用一种基于增广拉格朗日乘子(ALM)解的MC方法重构了横距轮廓。提出的基于低秩约束的方法可以避免基过完备的预设,从而有效地克服了CS方法的离网效应。利用实测数据进行实验分析,进一步验证了该方法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hankel Matrix Completion Approach for High-resolution ISAR Imaging with Sparse Aperture
Inverse synthetic aperture radar (ISAR) imaging is very challengeable when facing with sparse aperture (SA). Traditional compressive sensing (CS) methods handles the SA imaging problem using sparse representation, but will cause model mismatch inherently. In this paper, a Hankel matrix completion (HMC) approach is proposed for SA ISAR imaging, which can effectively enhance the imaging performance with grid-less technique. The Hankel matrices are constructed from the SA echo in each range bin. After the low-rank property is proved, an MC method based on an augmented Lagrange multiplier (ALM) solution is used to reconstruct the cross-range profile. The proposed method based on the low-rank constraint can avoid the presupposition of over complete basis, thus effectively overcoming the off-grid effect of CS methods. The robustness and effectiveness are further vali-dated using experimental analysis using measured data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信