使用优化,学习和无人机反射,以最大限度地提高无人机群的安全性

Amin Majd, A. Ashraf, E. Troubitsyna, M. Daneshtalab
{"title":"使用优化,学习和无人机反射,以最大限度地提高无人机群的安全性","authors":"Amin Majd, A. Ashraf, E. Troubitsyna, M. Daneshtalab","doi":"10.1109/CEC.2018.8477920","DOIUrl":null,"url":null,"abstract":"Despite the growing popularity of swarm-based applications of drones, there is still a lack of approaches to maximize the safety of swarms of drones by minimizing the risks of drone collisions. In this paper, we present an approach that uses optimization, learning, and automatic immediate responses (reflexes) of drones to ensure safe operations of swarms of drones. The proposed approach integrates a high-performance dynamic evolutionary algorithm and a reinforcement learning algorithm to generate safe and efficient drone routes and then augments the generated routes with dynamically computed drone reflexes to prevent collisions with unforeseen obstacles in the flying zone. We also present a parallel implementation of the proposed approach and evaluate it against two benchmarks. The results show that the proposed approach maximizes safety and generates highly efficient drone routes.","PeriodicalId":212677,"journal":{"name":"2018 IEEE Congress on Evolutionary Computation (CEC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Using Optimization, Learning, and Drone Reflexes to Maximize Safety of Swarms of Drones\",\"authors\":\"Amin Majd, A. Ashraf, E. Troubitsyna, M. Daneshtalab\",\"doi\":\"10.1109/CEC.2018.8477920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the growing popularity of swarm-based applications of drones, there is still a lack of approaches to maximize the safety of swarms of drones by minimizing the risks of drone collisions. In this paper, we present an approach that uses optimization, learning, and automatic immediate responses (reflexes) of drones to ensure safe operations of swarms of drones. The proposed approach integrates a high-performance dynamic evolutionary algorithm and a reinforcement learning algorithm to generate safe and efficient drone routes and then augments the generated routes with dynamically computed drone reflexes to prevent collisions with unforeseen obstacles in the flying zone. We also present a parallel implementation of the proposed approach and evaluate it against two benchmarks. The results show that the proposed approach maximizes safety and generates highly efficient drone routes.\",\"PeriodicalId\":212677,\"journal\":{\"name\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2018.8477920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

尽管基于无人机群的应用越来越受欢迎,但仍然缺乏通过最小化无人机碰撞风险来最大限度地提高无人机群安全的方法。在本文中,我们提出了一种利用无人机的优化、学习和自动即时反应(反射)来确保无人机群安全运行的方法。该方法将高性能动态进化算法与强化学习算法相结合,生成安全高效的无人机飞行路线,并利用动态计算的无人机反射对生成的路线进行增强,以防止与飞行区内不可预见的障碍物发生碰撞。我们还提出了所建议方法的并行实现,并根据两个基准对其进行评估。结果表明,该方法最大限度地提高了安全性,并生成了高效的无人机路线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Optimization, Learning, and Drone Reflexes to Maximize Safety of Swarms of Drones
Despite the growing popularity of swarm-based applications of drones, there is still a lack of approaches to maximize the safety of swarms of drones by minimizing the risks of drone collisions. In this paper, we present an approach that uses optimization, learning, and automatic immediate responses (reflexes) of drones to ensure safe operations of swarms of drones. The proposed approach integrates a high-performance dynamic evolutionary algorithm and a reinforcement learning algorithm to generate safe and efficient drone routes and then augments the generated routes with dynamically computed drone reflexes to prevent collisions with unforeseen obstacles in the flying zone. We also present a parallel implementation of the proposed approach and evaluate it against two benchmarks. The results show that the proposed approach maximizes safety and generates highly efficient drone routes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信