Q上扩展域上的伽罗瓦群对应

N. Dahoklory, H. W. M. Patty
{"title":"Q上扩展域上的伽罗瓦群对应","authors":"N. Dahoklory, H. W. M. Patty","doi":"10.30598/pattimurasci.2023.knmxxi.17-28","DOIUrl":null,"url":null,"abstract":"Let  be an extension field where  denotes dimension of  as a vector space over . Let  be the group of all automorphism of  that fixes  where the order of  is denoted by . Particularly, an extension field is called a Galois extension if . Moreover, we will give some properties of an extension field  which is a Galois extension. Using the properties of Galois extension, we will show that there is an one-one correspondence between the set of all intermediate fields in  and the set of all subgroups in . Furthermore, we will give some examples of Galois group correspondence using an extension field over . \n ","PeriodicalId":253946,"journal":{"name":"Pattimura Proceeding: Conference of Science and Technology","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galois Group Correspondence On Extension Fields Over Q\",\"authors\":\"N. Dahoklory, H. W. M. Patty\",\"doi\":\"10.30598/pattimurasci.2023.knmxxi.17-28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let  be an extension field where  denotes dimension of  as a vector space over . Let  be the group of all automorphism of  that fixes  where the order of  is denoted by . Particularly, an extension field is called a Galois extension if . Moreover, we will give some properties of an extension field  which is a Galois extension. Using the properties of Galois extension, we will show that there is an one-one correspondence between the set of all intermediate fields in  and the set of all subgroups in . Furthermore, we will give some examples of Galois group correspondence using an extension field over . \\n \",\"PeriodicalId\":253946,\"journal\":{\"name\":\"Pattimura Proceeding: Conference of Science and Technology\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattimura Proceeding: Conference of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30598/pattimurasci.2023.knmxxi.17-28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattimura Proceeding: Conference of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30598/pattimurasci.2023.knmxxi.17-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设为一个扩展域,其中表示作为向量空间的维数。设为固定的所有自同构的群其中的阶表示为。特别地,扩展域称为伽罗瓦扩展if。此外,我们还给出了一类伽罗瓦扩展域的一些性质。利用伽罗瓦推广的性质,证明了在的所有中间域的集合与在的所有子群的集合之间存在一一对应关系。此外,我们将给出一些使用扩展域的伽罗瓦群对应的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Galois Group Correspondence On Extension Fields Over Q
Let  be an extension field where  denotes dimension of  as a vector space over . Let  be the group of all automorphism of  that fixes  where the order of  is denoted by . Particularly, an extension field is called a Galois extension if . Moreover, we will give some properties of an extension field  which is a Galois extension. Using the properties of Galois extension, we will show that there is an one-one correspondence between the set of all intermediate fields in  and the set of all subgroups in . Furthermore, we will give some examples of Galois group correspondence using an extension field over .  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信