一种新型有效的形态边缘检测器

H. Zhuang, F. Hamano
{"title":"一种新型有效的形态边缘检测器","authors":"H. Zhuang, F. Hamano","doi":"10.1109/SSST.1988.17064","DOIUrl":null,"url":null,"abstract":"A type of edge detector based on the concept of gray-scale morphology is proposed. Edge detection can be divided into two phases; the first is noise removal, and the second is ideal edge detection. By using an iterative averaged closing-opening operation, impulse noise as well as Gaussian noise is eliminated from the image. Then, the resulting ideal edges can be extracted, either by using one of the classical spatial operators or by a simple morphologic operator. Results obtained from test images show that the proposed morphologic edge detectors are very effective.<<ETX>>","PeriodicalId":345412,"journal":{"name":"[1988] Proceedings. The Twentieth Southeastern Symposium on System Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A new type of effective morphologic edge detectors\",\"authors\":\"H. Zhuang, F. Hamano\",\"doi\":\"10.1109/SSST.1988.17064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A type of edge detector based on the concept of gray-scale morphology is proposed. Edge detection can be divided into two phases; the first is noise removal, and the second is ideal edge detection. By using an iterative averaged closing-opening operation, impulse noise as well as Gaussian noise is eliminated from the image. Then, the resulting ideal edges can be extracted, either by using one of the classical spatial operators or by a simple morphologic operator. Results obtained from test images show that the proposed morphologic edge detectors are very effective.<<ETX>>\",\"PeriodicalId\":345412,\"journal\":{\"name\":\"[1988] Proceedings. The Twentieth Southeastern Symposium on System Theory\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1988] Proceedings. The Twentieth Southeastern Symposium on System Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.1988.17064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1988] Proceedings. The Twentieth Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1988.17064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于灰度形态学的边缘检测器。边缘检测可分为两个阶段;首先是去噪,其次是理想边缘检测。通过采用迭代平均合开运算,消除了图像中的脉冲噪声和高斯噪声。然后,使用经典的空间算子或简单的形态学算子提取理想边缘。测试图像的结果表明,所提出的形态学边缘检测器是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new type of effective morphologic edge detectors
A type of edge detector based on the concept of gray-scale morphology is proposed. Edge detection can be divided into two phases; the first is noise removal, and the second is ideal edge detection. By using an iterative averaged closing-opening operation, impulse noise as well as Gaussian noise is eliminated from the image. Then, the resulting ideal edges can be extracted, either by using one of the classical spatial operators or by a simple morphologic operator. Results obtained from test images show that the proposed morphologic edge detectors are very effective.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信