基于遗传方法的属性向量优化:在字符分类中的应用

Benchaou Soukaina, M. Nasri, Fouad Aouinti, Khalid Zinedine, Ouafae El Melhaoui
{"title":"基于遗传方法的属性向量优化:在字符分类中的应用","authors":"Benchaou Soukaina, M. Nasri, Fouad Aouinti, Khalid Zinedine, Ouafae El Melhaoui","doi":"10.1109/CGIV.2016.85","DOIUrl":null,"url":null,"abstract":"Selecting the parameters for the classification is a delicate process. We present in this paper a method for selecting the parameters by the genetic algorithm which optimizes the choice of parameters by minimizing a cost function. This function is defined by a Trace criterion. The approach is validated on some characters images. The proposed algorithm gives a fast convergence towards the optimal solution.","PeriodicalId":351561,"journal":{"name":"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of the Attribute Vector by Genetic Approach: Application to the Classification of Characters\",\"authors\":\"Benchaou Soukaina, M. Nasri, Fouad Aouinti, Khalid Zinedine, Ouafae El Melhaoui\",\"doi\":\"10.1109/CGIV.2016.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selecting the parameters for the classification is a delicate process. We present in this paper a method for selecting the parameters by the genetic algorithm which optimizes the choice of parameters by minimizing a cost function. This function is defined by a Trace criterion. The approach is validated on some characters images. The proposed algorithm gives a fast convergence towards the optimal solution.\",\"PeriodicalId\":351561,\"journal\":{\"name\":\"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGIV.2016.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2016.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为分类选择参数是一个精细的过程。本文提出了一种用遗传算法选择参数的方法,该方法通过最小化代价函数来优化参数的选择。这个函数是由Trace条件定义的。在一些字符图像上验证了该方法的有效性。该算法收敛速度快,逼近最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of the Attribute Vector by Genetic Approach: Application to the Classification of Characters
Selecting the parameters for the classification is a delicate process. We present in this paper a method for selecting the parameters by the genetic algorithm which optimizes the choice of parameters by minimizing a cost function. This function is defined by a Trace criterion. The approach is validated on some characters images. The proposed algorithm gives a fast convergence towards the optimal solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信