{"title":"风电和电动汽车概率参与的随机市场出清模型","authors":"N. Neyestani, F. Soares, J. Iria","doi":"10.1109/ISGTEurope.2017.8260328","DOIUrl":null,"url":null,"abstract":"In this paper, a mixed-integer linear programing (MILP) model for the stochastic clearing of electricity markets with probabilistic participants is proposed. It is assumed that the sources of uncertainty in the market comes both from generation and demand side. The wind generating unit and electric vehicle aggregator are the supposed sources of uncertainty in the system. For the compensation of probable deviation of stochastic participants, flexible generation and demand will offer for the reserve activation. The two-stage model takes into account the day-ahead cost as well as the expected balancing costs due to probabilistic behavior of uncertain participants. A scenario-based approach is used to model the probabilistic participants. The proposed model stochastically clears the market and the results discuss the lower costs obtained by incorporating various resources of uncertainty and flexibility in the market.","PeriodicalId":345050,"journal":{"name":"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stochastic market clearing model with probabilistic participation of wind and electric vehicles\",\"authors\":\"N. Neyestani, F. Soares, J. Iria\",\"doi\":\"10.1109/ISGTEurope.2017.8260328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a mixed-integer linear programing (MILP) model for the stochastic clearing of electricity markets with probabilistic participants is proposed. It is assumed that the sources of uncertainty in the market comes both from generation and demand side. The wind generating unit and electric vehicle aggregator are the supposed sources of uncertainty in the system. For the compensation of probable deviation of stochastic participants, flexible generation and demand will offer for the reserve activation. The two-stage model takes into account the day-ahead cost as well as the expected balancing costs due to probabilistic behavior of uncertain participants. A scenario-based approach is used to model the probabilistic participants. The proposed model stochastically clears the market and the results discuss the lower costs obtained by incorporating various resources of uncertainty and flexibility in the market.\",\"PeriodicalId\":345050,\"journal\":{\"name\":\"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2017.8260328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2017.8260328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stochastic market clearing model with probabilistic participation of wind and electric vehicles
In this paper, a mixed-integer linear programing (MILP) model for the stochastic clearing of electricity markets with probabilistic participants is proposed. It is assumed that the sources of uncertainty in the market comes both from generation and demand side. The wind generating unit and electric vehicle aggregator are the supposed sources of uncertainty in the system. For the compensation of probable deviation of stochastic participants, flexible generation and demand will offer for the reserve activation. The two-stage model takes into account the day-ahead cost as well as the expected balancing costs due to probabilistic behavior of uncertain participants. A scenario-based approach is used to model the probabilistic participants. The proposed model stochastically clears the market and the results discuss the lower costs obtained by incorporating various resources of uncertainty and flexibility in the market.