可变形饱和多孔介质中混溶浆液扩散的数值模型

F. Bouchelaghem, L. Laloui, L. Vulliet, F. Descoeudres
{"title":"可变形饱和多孔介质中混溶浆液扩散的数值模型","authors":"F. Bouchelaghem, L. Laloui, L. Vulliet, F. Descoeudres","doi":"10.1201/9781003078548-43","DOIUrl":null,"url":null,"abstract":"In an attempt to describe the basic phenomenon of grout propagation, a continuous model of miscible fluid displacement in deformable saturated porous media is proposed. In order to exhibit the relevance of the hydromechanical coupling during the mass transport, the model encompasses equations of mass transport and the equilibrium equation of the porous medium as a whole. The basic field variables consist in solid displacement vector, fluid pressure and grout concentration. The mathematical formulation results in a highly coupled and non linear system, the solution of which requires specific numerical techniques. The dis-placement - pressure - concentration formulation is discretized in space by application of the weighted resi-dual method. The whole system is then integrated in time by means of the - method. In order to validate our approach, a numerical comparison is done with existing results obtained with a no-deformable porous me-dium model.","PeriodicalId":158691,"journal":{"name":"Numerical Models in Geomechanics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical model of miscible grout propagation in deformable saturated porous media\",\"authors\":\"F. Bouchelaghem, L. Laloui, L. Vulliet, F. Descoeudres\",\"doi\":\"10.1201/9781003078548-43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an attempt to describe the basic phenomenon of grout propagation, a continuous model of miscible fluid displacement in deformable saturated porous media is proposed. In order to exhibit the relevance of the hydromechanical coupling during the mass transport, the model encompasses equations of mass transport and the equilibrium equation of the porous medium as a whole. The basic field variables consist in solid displacement vector, fluid pressure and grout concentration. The mathematical formulation results in a highly coupled and non linear system, the solution of which requires specific numerical techniques. The dis-placement - pressure - concentration formulation is discretized in space by application of the weighted resi-dual method. The whole system is then integrated in time by means of the - method. In order to validate our approach, a numerical comparison is done with existing results obtained with a no-deformable porous me-dium model.\",\"PeriodicalId\":158691,\"journal\":{\"name\":\"Numerical Models in Geomechanics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Models in Geomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781003078548-43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Models in Geomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781003078548-43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了描述浆液扩展的基本现象,提出了可变形饱和多孔介质中混相流体位移的连续模型。为了显示质量传递过程中流体力学耦合的相关性,该模型将质量传递方程和多孔介质平衡方程作为一个整体。基本场变量包括固体位移矢量、流体压力和浆液浓度。数学公式的结果是一个高度耦合的非线性系统,它的解决需要特定的数值技术。采用加权残余对偶方法对驱替-压力-浓度公式进行空间离散化。然后用-方法在时间上对整个系统进行积分。为了验证我们的方法,与现有的无变形多孔介质模型的结果进行了数值比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical model of miscible grout propagation in deformable saturated porous media
In an attempt to describe the basic phenomenon of grout propagation, a continuous model of miscible fluid displacement in deformable saturated porous media is proposed. In order to exhibit the relevance of the hydromechanical coupling during the mass transport, the model encompasses equations of mass transport and the equilibrium equation of the porous medium as a whole. The basic field variables consist in solid displacement vector, fluid pressure and grout concentration. The mathematical formulation results in a highly coupled and non linear system, the solution of which requires specific numerical techniques. The dis-placement - pressure - concentration formulation is discretized in space by application of the weighted resi-dual method. The whole system is then integrated in time by means of the - method. In order to validate our approach, a numerical comparison is done with existing results obtained with a no-deformable porous me-dium model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信