基于MapReduce的K-Means算法并行实现

I. Borlea, R. Precup, Florin Dragan, Alexandra-Bianca Borlea
{"title":"基于MapReduce的K-Means算法并行实现","authors":"I. Borlea, R. Precup, Florin Dragan, Alexandra-Bianca Borlea","doi":"10.1109/SACI.2018.8441018","DOIUrl":null,"url":null,"abstract":"The information stored in a database can be processed for finding patterns, group the records in classes of records using a criterion or extracting valuable information that is hidden between database records. The artificial intelligence domain is used to analyze big volumes of data using special algorithms designed to handle a lot of information. The time needed by a dataset analysis algorithm to process a dataset usually increases with the size of the processed dataset. Giving the fact that the hardware components have evolved in the last years, the dataset analysis algorithms can be parallelized nowadays. This paper presents a parallel implementation of the K-means clustering algorithm on a Windows based operating systems using the MapReduce approach.","PeriodicalId":126087,"journal":{"name":"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Parallel Implementation of K-Means Algorithm Using MapReduce Approach\",\"authors\":\"I. Borlea, R. Precup, Florin Dragan, Alexandra-Bianca Borlea\",\"doi\":\"10.1109/SACI.2018.8441018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The information stored in a database can be processed for finding patterns, group the records in classes of records using a criterion or extracting valuable information that is hidden between database records. The artificial intelligence domain is used to analyze big volumes of data using special algorithms designed to handle a lot of information. The time needed by a dataset analysis algorithm to process a dataset usually increases with the size of the processed dataset. Giving the fact that the hardware components have evolved in the last years, the dataset analysis algorithms can be parallelized nowadays. This paper presents a parallel implementation of the K-means clustering algorithm on a Windows based operating systems using the MapReduce approach.\",\"PeriodicalId\":126087,\"journal\":{\"name\":\"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2018.8441018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2018.8441018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

可以处理存储在数据库中的信息以查找模式,使用标准将记录分组为记录类,或者提取隐藏在数据库记录之间的有价值的信息。人工智能领域用于分析大量数据,使用专门设计用于处理大量信息的特殊算法。数据集分析算法处理数据集所需的时间通常随着处理数据集的大小而增加。考虑到硬件组件在过去几年的发展,数据集分析算法现在可以并行化。本文利用MapReduce方法在Windows操作系统上并行实现K-means聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Implementation of K-Means Algorithm Using MapReduce Approach
The information stored in a database can be processed for finding patterns, group the records in classes of records using a criterion or extracting valuable information that is hidden between database records. The artificial intelligence domain is used to analyze big volumes of data using special algorithms designed to handle a lot of information. The time needed by a dataset analysis algorithm to process a dataset usually increases with the size of the processed dataset. Giving the fact that the hardware components have evolved in the last years, the dataset analysis algorithms can be parallelized nowadays. This paper presents a parallel implementation of the K-means clustering algorithm on a Windows based operating systems using the MapReduce approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信