模糊线性规划问题的严格灵敏度分析

Amit Kumar, Neha Bhtia
{"title":"模糊线性规划问题的严格灵敏度分析","authors":"Amit Kumar, Neha Bhtia","doi":"10.5899/2012/JFSVA-00107","DOIUrl":null,"url":null,"abstract":"The fuzzy set theory is being applied massively in many fields these days. One of these is linear programming problems. Upto best of our knowledge, in literature, sensitivity analysis for FVLP (Fuzzy Variable Linear Programming) problem has never been treated using ranking function. In this paper the sensitivity analysis for FVLP problems is studied using ranking function. Purpose is to introduce a simpler and convenient way to tackle the sensitivity analysis for FVLP problems. At the end it is shown that if in a FVLP problem both 'cost' and 'decision variables' are fuzzy numbers, then accuracy upto only rank can be obtained.","PeriodicalId":308518,"journal":{"name":"Journal of Fuzzy Set Valued Analysis","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Strict Sensitivity Analysis for Fuzzy Linear Programming Problem\",\"authors\":\"Amit Kumar, Neha Bhtia\",\"doi\":\"10.5899/2012/JFSVA-00107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fuzzy set theory is being applied massively in many fields these days. One of these is linear programming problems. Upto best of our knowledge, in literature, sensitivity analysis for FVLP (Fuzzy Variable Linear Programming) problem has never been treated using ranking function. In this paper the sensitivity analysis for FVLP problems is studied using ranking function. Purpose is to introduce a simpler and convenient way to tackle the sensitivity analysis for FVLP problems. At the end it is shown that if in a FVLP problem both 'cost' and 'decision variables' are fuzzy numbers, then accuracy upto only rank can be obtained.\",\"PeriodicalId\":308518,\"journal\":{\"name\":\"Journal of Fuzzy Set Valued Analysis\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fuzzy Set Valued Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5899/2012/JFSVA-00107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuzzy Set Valued Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5899/2012/JFSVA-00107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,模糊集合理论在许多领域得到了广泛的应用。其中之一就是线性规划问题。据我们所知,在文献中,模糊变量线性规划(FVLP)问题的敏感性分析从未使用排序函数进行处理。本文利用排序函数研究了FVLP问题的敏感性分析。目的是介绍一种更简单方便的方法来处理FVLP问题的敏感性分析。最后证明了在一个FVLP问题中,如果“成本”和“决策变量”都是模糊数,则只能获得最高到秩的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strict Sensitivity Analysis for Fuzzy Linear Programming Problem
The fuzzy set theory is being applied massively in many fields these days. One of these is linear programming problems. Upto best of our knowledge, in literature, sensitivity analysis for FVLP (Fuzzy Variable Linear Programming) problem has never been treated using ranking function. In this paper the sensitivity analysis for FVLP problems is studied using ranking function. Purpose is to introduce a simpler and convenient way to tackle the sensitivity analysis for FVLP problems. At the end it is shown that if in a FVLP problem both 'cost' and 'decision variables' are fuzzy numbers, then accuracy upto only rank can be obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信