认知无线电协同信道增益图跟踪

Seung-Jun Kim, E. Dall’Anese, G. Giannakis, S. Pupolin
{"title":"认知无线电协同信道增益图跟踪","authors":"Seung-Jun Kim, E. Dall’Anese, G. Giannakis, S. Pupolin","doi":"10.1109/CIP.2010.5604035","DOIUrl":null,"url":null,"abstract":"A collaborative algorithm is developed to track the channel gains from arbitrary positions in a geographical area to each node of a cognitive radio network. Spatio-temporal shadow fading effects are characterized using an experimentally verified spatial loss field model. Kriged Kalman filtering (KKF) is then applied to track the time-varying shadowing field. The proposed KKF algorithm consists of a distributed Kalman filter that estimates the spatio-temporal trend field, and a Kriging interpolator which captures the temporally white yet spatially descriptive component at the individual sensors. Numerical tests demonstrate that the collaborative tracking algorithm outperforms a non-collaborative alternative in terms of mean-square error when applied to a cognitive radio sensing task.","PeriodicalId":171474,"journal":{"name":"2010 2nd International Workshop on Cognitive Information Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Collaborative channel gain map tracking for cognitive radios\",\"authors\":\"Seung-Jun Kim, E. Dall’Anese, G. Giannakis, S. Pupolin\",\"doi\":\"10.1109/CIP.2010.5604035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A collaborative algorithm is developed to track the channel gains from arbitrary positions in a geographical area to each node of a cognitive radio network. Spatio-temporal shadow fading effects are characterized using an experimentally verified spatial loss field model. Kriged Kalman filtering (KKF) is then applied to track the time-varying shadowing field. The proposed KKF algorithm consists of a distributed Kalman filter that estimates the spatio-temporal trend field, and a Kriging interpolator which captures the temporally white yet spatially descriptive component at the individual sensors. Numerical tests demonstrate that the collaborative tracking algorithm outperforms a non-collaborative alternative in terms of mean-square error when applied to a cognitive radio sensing task.\",\"PeriodicalId\":171474,\"journal\":{\"name\":\"2010 2nd International Workshop on Cognitive Information Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Cognitive Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIP.2010.5604035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Cognitive Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIP.2010.5604035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

开发了一种协作算法来跟踪从地理区域的任意位置到认知无线网络的每个节点的信道增益。利用实验验证的空间损失场模型表征了时空阴影衰落效应。然后应用克里格卡尔曼滤波(KKF)对时变阴影场进行跟踪。提出的KKF算法包括一个估计时空趋势场的分布式卡尔曼滤波器和一个在单个传感器上捕获时间白色但空间描述性分量的克里格插值器。数值测试表明,当应用于认知无线电传感任务时,协作跟踪算法在均方误差方面优于非协作跟踪算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative channel gain map tracking for cognitive radios
A collaborative algorithm is developed to track the channel gains from arbitrary positions in a geographical area to each node of a cognitive radio network. Spatio-temporal shadow fading effects are characterized using an experimentally verified spatial loss field model. Kriged Kalman filtering (KKF) is then applied to track the time-varying shadowing field. The proposed KKF algorithm consists of a distributed Kalman filter that estimates the spatio-temporal trend field, and a Kriging interpolator which captures the temporally white yet spatially descriptive component at the individual sensors. Numerical tests demonstrate that the collaborative tracking algorithm outperforms a non-collaborative alternative in terms of mean-square error when applied to a cognitive radio sensing task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信