基于强化学习的惯性导航补偿

Eric Bozeman, Minhdao H. Nguyen, Mohammad Alam, J. Onners
{"title":"基于强化学习的惯性导航补偿","authors":"Eric Bozeman, Minhdao H. Nguyen, Mohammad Alam, J. Onners","doi":"10.1109/INERTIAL53425.2022.9787527","DOIUrl":null,"url":null,"abstract":"This paper presents a method for applying Reinforcement Learning (RL) techniques to extend the holdover time of an inertial system in the absence of aiding from a Global Navigation Satellite System (GNSS). Several RL algorithms were evaluated using this method. The performance results, in terms of positional error, for each algorithm are compared to each other as well as to the results from an unaided Kalman Filter and a navigation-grade Inertial Navigation System.","PeriodicalId":435781,"journal":{"name":"2022 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inertial Navigation Compensation with Reinforcement Learning\",\"authors\":\"Eric Bozeman, Minhdao H. Nguyen, Mohammad Alam, J. Onners\",\"doi\":\"10.1109/INERTIAL53425.2022.9787527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for applying Reinforcement Learning (RL) techniques to extend the holdover time of an inertial system in the absence of aiding from a Global Navigation Satellite System (GNSS). Several RL algorithms were evaluated using this method. The performance results, in terms of positional error, for each algorithm are compared to each other as well as to the results from an unaided Kalman Filter and a navigation-grade Inertial Navigation System.\",\"PeriodicalId\":435781,\"journal\":{\"name\":\"2022 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INERTIAL53425.2022.9787527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INERTIAL53425.2022.9787527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种应用强化学习(RL)技术在没有全球导航卫星系统(GNSS)辅助的情况下延长惯性系统停留时间的方法。使用该方法对几种强化学习算法进行了评估。在位置误差方面,对每种算法的性能结果进行了相互比较,并与独立卡尔曼滤波和导航级惯性导航系统的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inertial Navigation Compensation with Reinforcement Learning
This paper presents a method for applying Reinforcement Learning (RL) techniques to extend the holdover time of an inertial system in the absence of aiding from a Global Navigation Satellite System (GNSS). Several RL algorithms were evaluated using this method. The performance results, in terms of positional error, for each algorithm are compared to each other as well as to the results from an unaided Kalman Filter and a navigation-grade Inertial Navigation System.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信