从概念到代码:多任务推荐的深度学习

Omprakash Sonie
{"title":"从概念到代码:多任务推荐的深度学习","authors":"Omprakash Sonie","doi":"10.1145/3298689.3346957","DOIUrl":null,"url":null,"abstract":"Deep Learning has shown significant results in Computer Vision, Natural Language Processing, Speech and recommender systems. Promising techniques include Embedding, Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and its variant Long Short-Term Memory (LSTM and Bi-directional LSTMs), Attention, Autoencoders, Generative Adversarial Networks (GAN) and Bidirectional Encoder Representations from Transformer (BERT). Multi-task learning (MTL) has led to successes in many applications of machine learning. We are proposing a tutorial for applying MTL for recommendation, improving recommendation and providing explanation. We cover few recent and diverse techniques which will be used for hands-on session. We believe that a self-contained tutorial giving good conceptual understanding of MTL technique with sufficient mathematical background along with actual code will be of immense help to RecSys participants.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Concept to code: deep learning for multitask recommendation\",\"authors\":\"Omprakash Sonie\",\"doi\":\"10.1145/3298689.3346957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Learning has shown significant results in Computer Vision, Natural Language Processing, Speech and recommender systems. Promising techniques include Embedding, Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and its variant Long Short-Term Memory (LSTM and Bi-directional LSTMs), Attention, Autoencoders, Generative Adversarial Networks (GAN) and Bidirectional Encoder Representations from Transformer (BERT). Multi-task learning (MTL) has led to successes in many applications of machine learning. We are proposing a tutorial for applying MTL for recommendation, improving recommendation and providing explanation. We cover few recent and diverse techniques which will be used for hands-on session. We believe that a self-contained tutorial giving good conceptual understanding of MTL technique with sufficient mathematical background along with actual code will be of immense help to RecSys participants.\",\"PeriodicalId\":215384,\"journal\":{\"name\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3298689.3346957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3346957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

深度学习已经在计算机视觉、自然语言处理、语音和推荐系统中显示出显著的成果。有前途的技术包括嵌入、卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短期记忆(LSTM和双向LSTM)、注意力、自编码器、生成对抗网络(GAN)和双向编码器表示从变压器(BERT)。多任务学习(MTL)在机器学习的许多应用中取得了成功。我们提出了一个应用MTL进行推荐,改进推荐并提供解释的教程。我们涵盖了一些最近和多样化的技术,将用于实践会议。我们相信,一个独立的教程,对MTL技术有很好的概念理解,有足够的数学背景和实际的代码,将对RecSys的参与者有很大的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concept to code: deep learning for multitask recommendation
Deep Learning has shown significant results in Computer Vision, Natural Language Processing, Speech and recommender systems. Promising techniques include Embedding, Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and its variant Long Short-Term Memory (LSTM and Bi-directional LSTMs), Attention, Autoencoders, Generative Adversarial Networks (GAN) and Bidirectional Encoder Representations from Transformer (BERT). Multi-task learning (MTL) has led to successes in many applications of machine learning. We are proposing a tutorial for applying MTL for recommendation, improving recommendation and providing explanation. We cover few recent and diverse techniques which will be used for hands-on session. We believe that a self-contained tutorial giving good conceptual understanding of MTL technique with sufficient mathematical background along with actual code will be of immense help to RecSys participants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信