GCCNet:语义分割的全局上下文约束网络

Hyunwoo Kim, Huaiyu Li, S. Kee
{"title":"GCCNet:语义分割的全局上下文约束网络","authors":"Hyunwoo Kim, Huaiyu Li, S. Kee","doi":"10.5220/0007705703800387","DOIUrl":null,"url":null,"abstract":"The state-of-the-art semantic segmentation tasks can be achieved by the variants of the fully convolutional neural networks (FCNs), which consist of the feature encoding and the deconvolution. However, they struggle with missing or inconsistent labels. To alleviate these problems, we utilize the image-level multi-class encoding as the global contextual information. By incorporating object classification into the objective function, we can reduce incorrect pixel-level segmentation. Experimental results show that our algorithm can achieve better performance than other methods on the same level training data volume.","PeriodicalId":218840,"journal":{"name":"International Conference on Vehicle Technology and Intelligent Transport Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GCCNet: Global Context Constraint Network for Semantic Segmentation\",\"authors\":\"Hyunwoo Kim, Huaiyu Li, S. Kee\",\"doi\":\"10.5220/0007705703800387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The state-of-the-art semantic segmentation tasks can be achieved by the variants of the fully convolutional neural networks (FCNs), which consist of the feature encoding and the deconvolution. However, they struggle with missing or inconsistent labels. To alleviate these problems, we utilize the image-level multi-class encoding as the global contextual information. By incorporating object classification into the objective function, we can reduce incorrect pixel-level segmentation. Experimental results show that our algorithm can achieve better performance than other methods on the same level training data volume.\",\"PeriodicalId\":218840,\"journal\":{\"name\":\"International Conference on Vehicle Technology and Intelligent Transport Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Vehicle Technology and Intelligent Transport Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0007705703800387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Vehicle Technology and Intelligent Transport Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007705703800387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最先进的语义分割任务可以通过全卷积神经网络(fcn)的变体来实现,该变体由特征编码和反卷积组成。然而,他们与缺失或不一致的标签作斗争。为了缓解这些问题,我们利用图像级多类编码作为全局上下文信息。通过在目标函数中加入目标分类,可以减少错误的像素级分割。实验结果表明,在相同水平的训练数据量上,我们的算法可以取得比其他方法更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GCCNet: Global Context Constraint Network for Semantic Segmentation
The state-of-the-art semantic segmentation tasks can be achieved by the variants of the fully convolutional neural networks (FCNs), which consist of the feature encoding and the deconvolution. However, they struggle with missing or inconsistent labels. To alleviate these problems, we utilize the image-level multi-class encoding as the global contextual information. By incorporating object classification into the objective function, we can reduce incorrect pixel-level segmentation. Experimental results show that our algorithm can achieve better performance than other methods on the same level training data volume.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信