{"title":"GCCNet:语义分割的全局上下文约束网络","authors":"Hyunwoo Kim, Huaiyu Li, S. Kee","doi":"10.5220/0007705703800387","DOIUrl":null,"url":null,"abstract":"The state-of-the-art semantic segmentation tasks can be achieved by the variants of the fully convolutional neural networks (FCNs), which consist of the feature encoding and the deconvolution. However, they struggle with missing or inconsistent labels. To alleviate these problems, we utilize the image-level multi-class encoding as the global contextual information. By incorporating object classification into the objective function, we can reduce incorrect pixel-level segmentation. Experimental results show that our algorithm can achieve better performance than other methods on the same level training data volume.","PeriodicalId":218840,"journal":{"name":"International Conference on Vehicle Technology and Intelligent Transport Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GCCNet: Global Context Constraint Network for Semantic Segmentation\",\"authors\":\"Hyunwoo Kim, Huaiyu Li, S. Kee\",\"doi\":\"10.5220/0007705703800387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The state-of-the-art semantic segmentation tasks can be achieved by the variants of the fully convolutional neural networks (FCNs), which consist of the feature encoding and the deconvolution. However, they struggle with missing or inconsistent labels. To alleviate these problems, we utilize the image-level multi-class encoding as the global contextual information. By incorporating object classification into the objective function, we can reduce incorrect pixel-level segmentation. Experimental results show that our algorithm can achieve better performance than other methods on the same level training data volume.\",\"PeriodicalId\":218840,\"journal\":{\"name\":\"International Conference on Vehicle Technology and Intelligent Transport Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Vehicle Technology and Intelligent Transport Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0007705703800387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Vehicle Technology and Intelligent Transport Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007705703800387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GCCNet: Global Context Constraint Network for Semantic Segmentation
The state-of-the-art semantic segmentation tasks can be achieved by the variants of the fully convolutional neural networks (FCNs), which consist of the feature encoding and the deconvolution. However, they struggle with missing or inconsistent labels. To alleviate these problems, we utilize the image-level multi-class encoding as the global contextual information. By incorporating object classification into the objective function, we can reduce incorrect pixel-level segmentation. Experimental results show that our algorithm can achieve better performance than other methods on the same level training data volume.