基于fpga的PYNQ-Z2硬件加速

Vineeth C Johnson, Jyoti S. Bali, Shilpa Tanvashi, C. B. Kolanur
{"title":"基于fpga的PYNQ-Z2硬件加速","authors":"Vineeth C Johnson, Jyoti S. Bali, Shilpa Tanvashi, C. B. Kolanur","doi":"10.1109/ICEEICT56924.2023.10157764","DOIUrl":null,"url":null,"abstract":"A study on the FPGA development board PYNQ-Z2 for hardware acceleration is presented in this research paper. The experiment accelerates the tasks of optical character recognition (OCR) and image recognition using the FPGA on PYNQ-Z2. The output results on hardware acceleration (Processing system (PS) and Programmable Logic (PL)) are compared with the output results obtained while executing the same tasks on the Arm processor (Processing System (PS)) alone. In this experiment, a Long short-term memory (LSTM) neural network is used to implement OCR, and a Binarized neural network (BNN) is used to implement image recognition. LSTM and BNN here are quantized to reduce memory usage while implementing them on PYNQ-Z2.","PeriodicalId":345324,"journal":{"name":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FPGA-Based Hardware Acceleration Using PYNQ-Z2\",\"authors\":\"Vineeth C Johnson, Jyoti S. Bali, Shilpa Tanvashi, C. B. Kolanur\",\"doi\":\"10.1109/ICEEICT56924.2023.10157764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A study on the FPGA development board PYNQ-Z2 for hardware acceleration is presented in this research paper. The experiment accelerates the tasks of optical character recognition (OCR) and image recognition using the FPGA on PYNQ-Z2. The output results on hardware acceleration (Processing system (PS) and Programmable Logic (PL)) are compared with the output results obtained while executing the same tasks on the Arm processor (Processing System (PS)) alone. In this experiment, a Long short-term memory (LSTM) neural network is used to implement OCR, and a Binarized neural network (BNN) is used to implement image recognition. LSTM and BNN here are quantized to reduce memory usage while implementing them on PYNQ-Z2.\",\"PeriodicalId\":345324,\"journal\":{\"name\":\"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEICT56924.2023.10157764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEICT56924.2023.10157764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对FPGA开发板PYNQ-Z2进行了硬件加速研究。实验利用PYNQ-Z2上的FPGA加速了光学字符识别(OCR)和图像识别任务。将硬件加速(处理系统(PS)和可编程逻辑(PL))上的输出结果与单独在Arm处理器(处理系统(PS))上执行相同任务时获得的输出结果进行比较。本实验采用长短期记忆(LSTM)神经网络实现OCR,二值化神经网络(BNN)实现图像识别。在PYNQ-Z2上实现LSTM和BNN时,这里的LSTM和BNN被量化以减少内存使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA-Based Hardware Acceleration Using PYNQ-Z2
A study on the FPGA development board PYNQ-Z2 for hardware acceleration is presented in this research paper. The experiment accelerates the tasks of optical character recognition (OCR) and image recognition using the FPGA on PYNQ-Z2. The output results on hardware acceleration (Processing system (PS) and Programmable Logic (PL)) are compared with the output results obtained while executing the same tasks on the Arm processor (Processing System (PS)) alone. In this experiment, a Long short-term memory (LSTM) neural network is used to implement OCR, and a Binarized neural network (BNN) is used to implement image recognition. LSTM and BNN here are quantized to reduce memory usage while implementing them on PYNQ-Z2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信