Valentin Radu, P. Katsikouli, Rik Sarkar, M. Marina
{"title":"一种半监督学习方法,用于智能手机的鲁棒室内外检测","authors":"Valentin Radu, P. Katsikouli, Rik Sarkar, M. Marina","doi":"10.1145/2668332.2668347","DOIUrl":null,"url":null,"abstract":"The environmental context of a mobile device determines how it is used and how the device can optimize operations for greater efficiency and usability. We consider the problem of detecting if a device is indoor or outdoor. Towards this end, we present a general method employing semi-supervised machine learning and using only the lightweight sensors on a smartphone. We find that a particular semi-supervised learning method called co-training, when suitably engineered, is most effective. It is able to automatically learn characteristics of new environments and devices, and thereby provides a detection accuracy exceeding 90% even in unfamiliar circumstances. It can learn and adapt online, in real time, at modest computational costs. Thus the method is suitable for on-device learning. Implementation of the indoor-outdoor detection service based on our method is lightweight in energy use -- it can sleep when not in use and does not need to track the device state continuously. It is shown to outperform existing indoor-outdoor detection techniques that rely on static algorithms or GPS, in terms of both accuracy and energy-efficiency.","PeriodicalId":223777,"journal":{"name":"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":"{\"title\":\"A semi-supervised learning approach for robust indoor-outdoor detection with smartphones\",\"authors\":\"Valentin Radu, P. Katsikouli, Rik Sarkar, M. Marina\",\"doi\":\"10.1145/2668332.2668347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The environmental context of a mobile device determines how it is used and how the device can optimize operations for greater efficiency and usability. We consider the problem of detecting if a device is indoor or outdoor. Towards this end, we present a general method employing semi-supervised machine learning and using only the lightweight sensors on a smartphone. We find that a particular semi-supervised learning method called co-training, when suitably engineered, is most effective. It is able to automatically learn characteristics of new environments and devices, and thereby provides a detection accuracy exceeding 90% even in unfamiliar circumstances. It can learn and adapt online, in real time, at modest computational costs. Thus the method is suitable for on-device learning. Implementation of the indoor-outdoor detection service based on our method is lightweight in energy use -- it can sleep when not in use and does not need to track the device state continuously. It is shown to outperform existing indoor-outdoor detection techniques that rely on static algorithms or GPS, in terms of both accuracy and energy-efficiency.\",\"PeriodicalId\":223777,\"journal\":{\"name\":\"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"117\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2668332.2668347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2668332.2668347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A semi-supervised learning approach for robust indoor-outdoor detection with smartphones
The environmental context of a mobile device determines how it is used and how the device can optimize operations for greater efficiency and usability. We consider the problem of detecting if a device is indoor or outdoor. Towards this end, we present a general method employing semi-supervised machine learning and using only the lightweight sensors on a smartphone. We find that a particular semi-supervised learning method called co-training, when suitably engineered, is most effective. It is able to automatically learn characteristics of new environments and devices, and thereby provides a detection accuracy exceeding 90% even in unfamiliar circumstances. It can learn and adapt online, in real time, at modest computational costs. Thus the method is suitable for on-device learning. Implementation of the indoor-outdoor detection service based on our method is lightweight in energy use -- it can sleep when not in use and does not need to track the device state continuously. It is shown to outperform existing indoor-outdoor detection techniques that rely on static algorithms or GPS, in terms of both accuracy and energy-efficiency.