PGAC:一种数据聚类的并行遗传算法

Giosuè Lo Bosco
{"title":"PGAC:一种数据聚类的并行遗传算法","authors":"Giosuè Lo Bosco","doi":"10.1109/CAMP.2005.41","DOIUrl":null,"url":null,"abstract":"Cluster analysis is a valuable tool for exploratory pattern analysis, especially when very little a priori knowledge about the data is available. Distributed systems, based on high speed intranet connections, provide new tools in order to design new and faster clustering algorithms. Here, a parallel genetic algorithm for clustering called PGAC is described. The used strategy of parallelization is the island model paradigm where different populations of chromosomes (called demes) evolve locally to each processor and from time to time some individuals are moved from one deme to another. Experiments have been performed for testing the benefits of the parallelisation paradigm in terms of computation time and correctness of the solution.","PeriodicalId":340151,"journal":{"name":"International Workshop on Computer Architectures for Machine Perception","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"PGAC: A Parallel Genetic Algorithm for Data Clustering\",\"authors\":\"Giosuè Lo Bosco\",\"doi\":\"10.1109/CAMP.2005.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cluster analysis is a valuable tool for exploratory pattern analysis, especially when very little a priori knowledge about the data is available. Distributed systems, based on high speed intranet connections, provide new tools in order to design new and faster clustering algorithms. Here, a parallel genetic algorithm for clustering called PGAC is described. The used strategy of parallelization is the island model paradigm where different populations of chromosomes (called demes) evolve locally to each processor and from time to time some individuals are moved from one deme to another. Experiments have been performed for testing the benefits of the parallelisation paradigm in terms of computation time and correctness of the solution.\",\"PeriodicalId\":340151,\"journal\":{\"name\":\"International Workshop on Computer Architectures for Machine Perception\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Computer Architectures for Machine Perception\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMP.2005.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Computer Architectures for Machine Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMP.2005.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于探索性模式分析来说,聚类分析是一个很有价值的工具,特别是当关于数据的先验知识非常少的时候。基于高速内部网连接的分布式系统为设计新的更快的聚类算法提供了新的工具。本文描述了一种用于聚类的并行遗传算法PGAC。使用的并行化策略是岛模型范式,其中不同的染色体种群(称为deme)在每个处理器中局部进化,并且不时地将一些个体从一个deme移到另一个deme。已经进行了实验,以测试并行化范式在计算时间和解决方案正确性方面的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PGAC: A Parallel Genetic Algorithm for Data Clustering
Cluster analysis is a valuable tool for exploratory pattern analysis, especially when very little a priori knowledge about the data is available. Distributed systems, based on high speed intranet connections, provide new tools in order to design new and faster clustering algorithms. Here, a parallel genetic algorithm for clustering called PGAC is described. The used strategy of parallelization is the island model paradigm where different populations of chromosomes (called demes) evolve locally to each processor and from time to time some individuals are moved from one deme to another. Experiments have been performed for testing the benefits of the parallelisation paradigm in terms of computation time and correctness of the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信