哈维格数的计算及相关的收缩问题

F. Fomin, D. Lokshtanov, Ivan Mihajlin, Saket Saurabh, M. Zehavi
{"title":"哈维格数的计算及相关的收缩问题","authors":"F. Fomin, D. Lokshtanov, Ivan Mihajlin, Saket Saurabh, M. Zehavi","doi":"10.1145/3448639","DOIUrl":null,"url":null,"abstract":"We prove that the Hadwiger number of an n-vertex graph G (the maximum size of a clique minor in G) cannot be computed in time no(n), unless the Exponential Time Hypothesis (ETH) fails. This resolves a well-known open question in the area of exact exponential algorithms. The technique developed for resolving the Hadwiger number problem has a wider applicability. We use it to rule out the existence of no(n)-time algorithms (up to the ETH) for a large class of computational problems concerning edge contractions in graphs.","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Computation of Hadwiger Number and Related Contraction Problems\",\"authors\":\"F. Fomin, D. Lokshtanov, Ivan Mihajlin, Saket Saurabh, M. Zehavi\",\"doi\":\"10.1145/3448639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the Hadwiger number of an n-vertex graph G (the maximum size of a clique minor in G) cannot be computed in time no(n), unless the Exponential Time Hypothesis (ETH) fails. This resolves a well-known open question in the area of exact exponential algorithms. The technique developed for resolving the Hadwiger number problem has a wider applicability. We use it to rule out the existence of no(n)-time algorithms (up to the ETH) for a large class of computational problems concerning edge contractions in graphs.\",\"PeriodicalId\":198744,\"journal\":{\"name\":\"ACM Transactions on Computation Theory (TOCT)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computation Theory (TOCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3448639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

证明了n顶点图G的哈维格数(G中小团的最大大小)不能在时间no(n)内计算,除非指数时间假设(ETH)不成立。这解决了精确指数算法领域中一个众所周知的开放性问题。为解决哈维格数问题而开发的技术具有更广泛的适用性。我们用它来排除无(n)时间算法(到ETH)的存在,用于大量关于图中边收缩的计算问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation of Hadwiger Number and Related Contraction Problems
We prove that the Hadwiger number of an n-vertex graph G (the maximum size of a clique minor in G) cannot be computed in time no(n), unless the Exponential Time Hypothesis (ETH) fails. This resolves a well-known open question in the area of exact exponential algorithms. The technique developed for resolving the Hadwiger number problem has a wider applicability. We use it to rule out the existence of no(n)-time algorithms (up to the ETH) for a large class of computational problems concerning edge contractions in graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信