可证明的笛卡尔机器人和开链机械臂最优动力学规划的良好逼近算法

SCG '90 Pub Date : 1990-05-01 DOI:10.1145/98524.98594
B. Donald, P. Xavier
{"title":"可证明的笛卡尔机器人和开链机械臂最优动力学规划的良好逼近算法","authors":"B. Donald, P. Xavier","doi":"10.1145/98524.98594","DOIUrl":null,"url":null,"abstract":"We consider the following problem: given a robot system, find a minimal-time trajectory from a start state to a goal state, while avoiding obstacles by a speed-dependent safety margin and respecting dynamics bounds. In [CDRX] we developed a provably good approximation algorithm for the minimum-time trajectory problem for a robot system with decoupled dynamics bounds. This algorithm differed from previous work in three ways: it is possible (1) to bound the goodness of the approximation by an error term ε (2) to polynomially bound the running time (complexity) of our algorithm; and (3) to express the complexity as a polynomial function of the error term.\nWe extend these results to <italic>d</italic>-link, revolute-joint 3D robots will full rigid body dynamics. Specifically, we first prove a generalized trajectory-tracking lemma for robots with coupled dynamics bounds. Using this result we describe polynomial-time approximation algorithms for Cartesian robots obeying <italic>L</italic><subscrpt>2</subscrpt> dynamics bounds and open kinematic chain manipulators with revolute and prismatic joints; the latter class includes most industrial manipulators. We obtain a general <italic>&Ogr;</italic>(<italic>n</italic><supscrpt>2</supscrpt> (log <italic>n</italic>)(1/ε<supscrpt>6<italic>d</italic>-1</supscrpt>) algorithm, where <italic>n</italic> is the geometric complexity. The algorithm is simple, but the new game-theoretic proof techniques we introduce are subtle, and employ tools from disparate parts of computational geometry, robotics, and dynamical systems.","PeriodicalId":113850,"journal":{"name":"SCG '90","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Provably good approximation algorithms for optimal kinodynamic planning for Cartesian robots and open chain manipulators\",\"authors\":\"B. Donald, P. Xavier\",\"doi\":\"10.1145/98524.98594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the following problem: given a robot system, find a minimal-time trajectory from a start state to a goal state, while avoiding obstacles by a speed-dependent safety margin and respecting dynamics bounds. In [CDRX] we developed a provably good approximation algorithm for the minimum-time trajectory problem for a robot system with decoupled dynamics bounds. This algorithm differed from previous work in three ways: it is possible (1) to bound the goodness of the approximation by an error term ε (2) to polynomially bound the running time (complexity) of our algorithm; and (3) to express the complexity as a polynomial function of the error term.\\nWe extend these results to <italic>d</italic>-link, revolute-joint 3D robots will full rigid body dynamics. Specifically, we first prove a generalized trajectory-tracking lemma for robots with coupled dynamics bounds. Using this result we describe polynomial-time approximation algorithms for Cartesian robots obeying <italic>L</italic><subscrpt>2</subscrpt> dynamics bounds and open kinematic chain manipulators with revolute and prismatic joints; the latter class includes most industrial manipulators. We obtain a general <italic>&Ogr;</italic>(<italic>n</italic><supscrpt>2</supscrpt> (log <italic>n</italic>)(1/ε<supscrpt>6<italic>d</italic>-1</supscrpt>) algorithm, where <italic>n</italic> is the geometric complexity. The algorithm is simple, but the new game-theoretic proof techniques we introduce are subtle, and employ tools from disparate parts of computational geometry, robotics, and dynamical systems.\",\"PeriodicalId\":113850,\"journal\":{\"name\":\"SCG '90\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SCG '90\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/98524.98594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SCG '90","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/98524.98594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

我们考虑以下问题:给定一个机器人系统,找到一个从起始状态到目标状态的最短时间轨迹,同时通过依赖于速度的安全裕度和尊重动力学边界避开障碍物。在[CDRX]中,我们为具有解耦动力学边界的机器人系统的最小时间轨迹问题开发了一种可证明的良好逼近算法。该算法与以前的工作在三个方面有所不同:它可以(1)通过误差项ε(2)将近似的优度与我们的算法的运行时间(复杂度)多项式地绑定;(3)将复杂度表示为误差项的多项式函数。我们将这些结果扩展到d-link,转动关节3D机器人将完全刚体动力学。具体来说,我们首先证明了具有耦合动力学界的机器人的广义轨迹跟踪引理。利用这一结果,我们描述了服从L2动力学边界的笛卡尔机器人和具有转动关节和移动关节的开放运动链机械臂的多项式时间逼近算法;后一类包括大多数工业机械手。我们得到了一个通用的&Ogr;(n2 (log n)(1/ε6d-1)算法,其中n为几何复杂度。算法很简单,但是我们引入的新的博弈论证明技术是微妙的,并且使用了来自计算几何、机器人和动力系统不同部分的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Provably good approximation algorithms for optimal kinodynamic planning for Cartesian robots and open chain manipulators
We consider the following problem: given a robot system, find a minimal-time trajectory from a start state to a goal state, while avoiding obstacles by a speed-dependent safety margin and respecting dynamics bounds. In [CDRX] we developed a provably good approximation algorithm for the minimum-time trajectory problem for a robot system with decoupled dynamics bounds. This algorithm differed from previous work in three ways: it is possible (1) to bound the goodness of the approximation by an error term ε (2) to polynomially bound the running time (complexity) of our algorithm; and (3) to express the complexity as a polynomial function of the error term. We extend these results to d-link, revolute-joint 3D robots will full rigid body dynamics. Specifically, we first prove a generalized trajectory-tracking lemma for robots with coupled dynamics bounds. Using this result we describe polynomial-time approximation algorithms for Cartesian robots obeying L2 dynamics bounds and open kinematic chain manipulators with revolute and prismatic joints; the latter class includes most industrial manipulators. We obtain a general &Ogr;(n2 (log n)(1/ε6d-1) algorithm, where n is the geometric complexity. The algorithm is simple, but the new game-theoretic proof techniques we introduce are subtle, and employ tools from disparate parts of computational geometry, robotics, and dynamical systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信