《马里奥》的有趣方面:基于强化学习的多方面体验驱动PCG

Ziqi Wang, Jialin Liu, Georgios N. Yannakakis
{"title":"《马里奥》的有趣方面:基于强化学习的多方面体验驱动PCG","authors":"Ziqi Wang, Jialin Liu, Georgios N. Yannakakis","doi":"10.1145/3555858.3563282","DOIUrl":null,"url":null,"abstract":"The recently introduced EDRL framework approaches the experience-driven (ED) procedural generation of game content via a reinforcement learning (RL) perspective. EDRL has so far shown its effectiveness in generating novel platformer game levels endlessly in an online fashion. This paper extends the framework by integrating multiple facets of game creativity in the ED generation process. In particular, we employ EDRL on the creative facets of game level and gameplay design in Super Mario Bros. Inspired by Koster’s theory of fun, we formulate fun as moderate degrees of level or gameplay divergence and equip the algorithm with such reward functions. Moreover, we enable faster and more efficient game content generation through an episodic generative soft actor-critic algorithm. The resulting multifaceted EDRL is not only capable of generating fun levels efficiently, but it is also robust with respect to dissimilar playing styles and initial game level conditions.","PeriodicalId":290159,"journal":{"name":"Proceedings of the 17th International Conference on the Foundations of Digital Games","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Fun Facets of Mario: Multifaceted Experience-Driven PCG via Reinforcement Learning\",\"authors\":\"Ziqi Wang, Jialin Liu, Georgios N. Yannakakis\",\"doi\":\"10.1145/3555858.3563282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recently introduced EDRL framework approaches the experience-driven (ED) procedural generation of game content via a reinforcement learning (RL) perspective. EDRL has so far shown its effectiveness in generating novel platformer game levels endlessly in an online fashion. This paper extends the framework by integrating multiple facets of game creativity in the ED generation process. In particular, we employ EDRL on the creative facets of game level and gameplay design in Super Mario Bros. Inspired by Koster’s theory of fun, we formulate fun as moderate degrees of level or gameplay divergence and equip the algorithm with such reward functions. Moreover, we enable faster and more efficient game content generation through an episodic generative soft actor-critic algorithm. The resulting multifaceted EDRL is not only capable of generating fun levels efficiently, but it is also robust with respect to dissimilar playing styles and initial game level conditions.\",\"PeriodicalId\":290159,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on the Foundations of Digital Games\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on the Foundations of Digital Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3555858.3563282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on the Foundations of Digital Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555858.3563282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近引入的EDRL框架通过强化学习(RL)的视角来处理游戏内容的体验驱动(ED)程序生成。到目前为止,EDRL已经证明了它在以在线方式不断生成新颖平台游戏关卡方面的有效性。本文通过整合游戏创意在ED生成过程中的多个方面来扩展该框架。特别是,我们将EDRL运用于《超级马里奥兄弟》游戏关卡和玩法设计的创意层面。受Koster乐趣理论的启发,我们将乐趣定义为中等程度的关卡或玩法差异,并为算法配备这样的奖励功能。此外,我们通过情节生成软演员评论算法实现更快,更有效的游戏内容生成。由此产生的多面EDRL不仅能够有效地生成有趣的关卡,而且在不同的游戏风格和初始游戏关卡条件方面也很稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Fun Facets of Mario: Multifaceted Experience-Driven PCG via Reinforcement Learning
The recently introduced EDRL framework approaches the experience-driven (ED) procedural generation of game content via a reinforcement learning (RL) perspective. EDRL has so far shown its effectiveness in generating novel platformer game levels endlessly in an online fashion. This paper extends the framework by integrating multiple facets of game creativity in the ED generation process. In particular, we employ EDRL on the creative facets of game level and gameplay design in Super Mario Bros. Inspired by Koster’s theory of fun, we formulate fun as moderate degrees of level or gameplay divergence and equip the algorithm with such reward functions. Moreover, we enable faster and more efficient game content generation through an episodic generative soft actor-critic algorithm. The resulting multifaceted EDRL is not only capable of generating fun levels efficiently, but it is also robust with respect to dissimilar playing styles and initial game level conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信